Generalized lagrangian duals and sums of squares relaxations of sparse polynomial optimization blems

Sunyoung Kim, Masakazu Kojima, Hayato Waki

研究成果: Contribution to journalArticle

41 引用 (Scopus)

抜粋

Sequences of generalized Lagrangian duals and their sums of squares (SOS) of polynomials relaxations for a polynomial optimization problem (POP) are introduced. The sparsity of polynomials in the POP is used to reduce the sizes of the Lagrangian duals and their SOS relaxations. It is proved that the optimal values of the Lagrangian duals in the sequence converge to the optimal value of the POP using a method from the penalty function approach. The sequence of SOS relaxations is transformed into a sequence of semidefinite programing (SDP) relaxations of the POP, which correspond to duals of modification and generalization of SDP relaxations given by Lasserre for the POP.

元の言語英語
ページ(範囲)697-719
ページ数23
ジャーナルSIAM Journal on Optimization
15
発行部数3
DOI
出版物ステータス出版済み - 8 26 2005
外部発表Yes

All Science Journal Classification (ASJC) codes

  • Software
  • Theoretical Computer Science

フィンガープリント Generalized lagrangian duals and sums of squares relaxations of sparse polynomial optimization blems' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用