Generalized lagrangian duals and sums of squares relaxations of sparse polynomial optimization blems

Sunyoung Kim, Masakazu Kojima, Hayato Waki

研究成果: ジャーナルへの寄稿学術誌査読

43 被引用数 (Scopus)

抄録

Sequences of generalized Lagrangian duals and their sums of squares (SOS) of polynomials relaxations for a polynomial optimization problem (POP) are introduced. The sparsity of polynomials in the POP is used to reduce the sizes of the Lagrangian duals and their SOS relaxations. It is proved that the optimal values of the Lagrangian duals in the sequence converge to the optimal value of the POP using a method from the penalty function approach. The sequence of SOS relaxations is transformed into a sequence of semidefinite programing (SDP) relaxations of the POP, which correspond to duals of modification and generalization of SDP relaxations given by Lasserre for the POP.

本文言語英語
ページ(範囲)697-719
ページ数23
ジャーナルSIAM Journal on Optimization
15
3
DOI
出版ステータス出版済み - 2005
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 理論的コンピュータサイエンス

フィンガープリント

「Generalized lagrangian duals and sums of squares relaxations of sparse polynomial optimization blems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル