Generating functions and topological complexity

Michael Farber, Daisuke Kishimoto, Donald Stanley

研究成果: ジャーナルへの寄稿学術誌査読

4 被引用数 (Scopus)

抄録

We examine the rationality conjecture raised in [1] which states that (a) the formal power series ∑r≥1TCr+1(X)⋅xr represents a rational function of x with a single pole of order 2 at x=1 and (b) the leading coefficient of the pole equals cat(X). Here X is a finite CW-complex and for r≥2 the symbol TCr(X) denotes its r-th sequential topological complexity. We analyse an example (violating the Ganea conjecture) and conclude that part (b) of the rationality conjecture is false in general. Besides, we establish a cohomological version of the rationality conjecture.

本文言語英語
論文番号107235
ジャーナルTopology and its Applications
278
DOI
出版ステータス出版済み - 6月 1 2020
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 幾何学とトポロジー

フィンガープリント

「Generating functions and topological complexity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル