Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley

Ahmed Sallam, Ahmed Amro, Ammar EL-Akhdar, Mona F.A. Dawood, Toshihiro Kumamaru, P. Stephen Baenziger

研究成果: ジャーナルへの寄稿記事

2 引用 (Scopus)

抄録

Heat stress is one of the abiotic stresses that limit the production and productivity of barley. Understanding the genetic variation, changes in physiological processes and level of genetic diversity existing among genotypes are needed to produce new cultivars not only having a high tolerance to heat stress, but also displaying high yield. To address this challenge, a set of 60 highly homozygous, diverse barley genotypes were evaluated under normal and heat stress conditions in two seasons of 2014/2015 and 2015/2016. Seedling vigor (SV) as a morphological trait was visually scored under normal conditions. Plant height (Ph), days to flowering (DOF), 1000-kernel weight (TKW), grain yield per spike (GYPS), yield per plot (YPP) and biological yield (BY) were measured. Moreover, proline content (ProC), soluble carbohydrate content (SCC), starch content, soluble protein (SP), and amino acid (AA) content as physiological parameters were analyzed from the grains. High genetic variation was observed among genotypes for all traits scored in this study. All traits had high broad-sense heritability estimates ranging from 0.59 (SV) to 0.97 (TKW) for yield traits. Seedling vigor was significantly correlated with all yield traits under both conditions. Among all physiological traits, the increase in ProC and reduction in starch content due to heat stress had significant correlations with the reduction due to heat stress in YPP, GYPS, TKW, and BY. Furthermore, the genetic diversity based on genetic distance (GD) among genotypes was investigated using 206 highly polymorphic SSR marker alleles. The GD ranged from 0.70 to 0.98 indicating that these genotypes are highly and genetically dissimilar. The combination of analyses using molecular markers, genetic variation in yield traits, and changes in physiological traits provided useful information in identifying the tolerant genotypes which can be used to improve heat tolerance in barley through breeding.

元の言語英語
ページ(範囲)2441-2453
ページ数13
ジャーナルMolecular biology reports
45
発行部数6
DOI
出版物ステータス出版済み - 12 1 2018

Fingerprint

Hordeum
Genotype
Hot Temperature
Seedlings
Proline
Starch
Physiological Phenomena
Breeding
Thermotolerance
Molecular Biology
Alleles
Carbohydrates
Amino Acids
Weights and Measures
Proteins

All Science Journal Classification (ASJC) codes

  • Molecular Biology
  • Genetics

これを引用

Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley. / Sallam, Ahmed; Amro, Ahmed; EL-Akhdar, Ammar; Dawood, Mona F.A.; Kumamaru, Toshihiro; Stephen Baenziger, P.

:: Molecular biology reports, 巻 45, 番号 6, 01.12.2018, p. 2441-2453.

研究成果: ジャーナルへの寄稿記事

Sallam, Ahmed ; Amro, Ahmed ; EL-Akhdar, Ammar ; Dawood, Mona F.A. ; Kumamaru, Toshihiro ; Stephen Baenziger, P. / Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley. :: Molecular biology reports. 2018 ; 巻 45, 番号 6. pp. 2441-2453.
@article{ad9eb4faa9474ef78ec5b257ae556a18,
title = "Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley",
abstract = "Heat stress is one of the abiotic stresses that limit the production and productivity of barley. Understanding the genetic variation, changes in physiological processes and level of genetic diversity existing among genotypes are needed to produce new cultivars not only having a high tolerance to heat stress, but also displaying high yield. To address this challenge, a set of 60 highly homozygous, diverse barley genotypes were evaluated under normal and heat stress conditions in two seasons of 2014/2015 and 2015/2016. Seedling vigor (SV) as a morphological trait was visually scored under normal conditions. Plant height (Ph), days to flowering (DOF), 1000-kernel weight (TKW), grain yield per spike (GYPS), yield per plot (YPP) and biological yield (BY) were measured. Moreover, proline content (ProC), soluble carbohydrate content (SCC), starch content, soluble protein (SP), and amino acid (AA) content as physiological parameters were analyzed from the grains. High genetic variation was observed among genotypes for all traits scored in this study. All traits had high broad-sense heritability estimates ranging from 0.59 (SV) to 0.97 (TKW) for yield traits. Seedling vigor was significantly correlated with all yield traits under both conditions. Among all physiological traits, the increase in ProC and reduction in starch content due to heat stress had significant correlations with the reduction due to heat stress in YPP, GYPS, TKW, and BY. Furthermore, the genetic diversity based on genetic distance (GD) among genotypes was investigated using 206 highly polymorphic SSR marker alleles. The GD ranged from 0.70 to 0.98 indicating that these genotypes are highly and genetically dissimilar. The combination of analyses using molecular markers, genetic variation in yield traits, and changes in physiological traits provided useful information in identifying the tolerant genotypes which can be used to improve heat tolerance in barley through breeding.",
author = "Ahmed Sallam and Ahmed Amro and Ammar EL-Akhdar and Dawood, {Mona F.A.} and Toshihiro Kumamaru and {Stephen Baenziger}, P.",
year = "2018",
month = "12",
day = "1",
doi = "10.1007/s11033-018-4410-6",
language = "English",
volume = "45",
pages = "2441--2453",
journal = "Molecular Biology Reports",
issn = "0301-4851",
publisher = "Springer Netherlands",
number = "6",

}

TY - JOUR

T1 - Genetic diversity and genetic variation in morpho-physiological traits to improve heat tolerance in Spring barley

AU - Sallam, Ahmed

AU - Amro, Ahmed

AU - EL-Akhdar, Ammar

AU - Dawood, Mona F.A.

AU - Kumamaru, Toshihiro

AU - Stephen Baenziger, P.

PY - 2018/12/1

Y1 - 2018/12/1

N2 - Heat stress is one of the abiotic stresses that limit the production and productivity of barley. Understanding the genetic variation, changes in physiological processes and level of genetic diversity existing among genotypes are needed to produce new cultivars not only having a high tolerance to heat stress, but also displaying high yield. To address this challenge, a set of 60 highly homozygous, diverse barley genotypes were evaluated under normal and heat stress conditions in two seasons of 2014/2015 and 2015/2016. Seedling vigor (SV) as a morphological trait was visually scored under normal conditions. Plant height (Ph), days to flowering (DOF), 1000-kernel weight (TKW), grain yield per spike (GYPS), yield per plot (YPP) and biological yield (BY) were measured. Moreover, proline content (ProC), soluble carbohydrate content (SCC), starch content, soluble protein (SP), and amino acid (AA) content as physiological parameters were analyzed from the grains. High genetic variation was observed among genotypes for all traits scored in this study. All traits had high broad-sense heritability estimates ranging from 0.59 (SV) to 0.97 (TKW) for yield traits. Seedling vigor was significantly correlated with all yield traits under both conditions. Among all physiological traits, the increase in ProC and reduction in starch content due to heat stress had significant correlations with the reduction due to heat stress in YPP, GYPS, TKW, and BY. Furthermore, the genetic diversity based on genetic distance (GD) among genotypes was investigated using 206 highly polymorphic SSR marker alleles. The GD ranged from 0.70 to 0.98 indicating that these genotypes are highly and genetically dissimilar. The combination of analyses using molecular markers, genetic variation in yield traits, and changes in physiological traits provided useful information in identifying the tolerant genotypes which can be used to improve heat tolerance in barley through breeding.

AB - Heat stress is one of the abiotic stresses that limit the production and productivity of barley. Understanding the genetic variation, changes in physiological processes and level of genetic diversity existing among genotypes are needed to produce new cultivars not only having a high tolerance to heat stress, but also displaying high yield. To address this challenge, a set of 60 highly homozygous, diverse barley genotypes were evaluated under normal and heat stress conditions in two seasons of 2014/2015 and 2015/2016. Seedling vigor (SV) as a morphological trait was visually scored under normal conditions. Plant height (Ph), days to flowering (DOF), 1000-kernel weight (TKW), grain yield per spike (GYPS), yield per plot (YPP) and biological yield (BY) were measured. Moreover, proline content (ProC), soluble carbohydrate content (SCC), starch content, soluble protein (SP), and amino acid (AA) content as physiological parameters were analyzed from the grains. High genetic variation was observed among genotypes for all traits scored in this study. All traits had high broad-sense heritability estimates ranging from 0.59 (SV) to 0.97 (TKW) for yield traits. Seedling vigor was significantly correlated with all yield traits under both conditions. Among all physiological traits, the increase in ProC and reduction in starch content due to heat stress had significant correlations with the reduction due to heat stress in YPP, GYPS, TKW, and BY. Furthermore, the genetic diversity based on genetic distance (GD) among genotypes was investigated using 206 highly polymorphic SSR marker alleles. The GD ranged from 0.70 to 0.98 indicating that these genotypes are highly and genetically dissimilar. The combination of analyses using molecular markers, genetic variation in yield traits, and changes in physiological traits provided useful information in identifying the tolerant genotypes which can be used to improve heat tolerance in barley through breeding.

UR - http://www.scopus.com/inward/record.url?scp=85056357525&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056357525&partnerID=8YFLogxK

U2 - 10.1007/s11033-018-4410-6

DO - 10.1007/s11033-018-4410-6

M3 - Article

C2 - 30411192

AN - SCOPUS:85056357525

VL - 45

SP - 2441

EP - 2453

JO - Molecular Biology Reports

JF - Molecular Biology Reports

SN - 0301-4851

IS - 6

ER -