TY - JOUR
T1 - Genetic Profiling of Non-Small Cell Lung Cancer at Development of Resistance to First- or Second-Generation EGFR-TKIs by CAPP-Seq Analysis of Circulating Tumor DNA
AU - Otsubo, Kohei
AU - Sakai, Kazuko
AU - Takeshita, Masafumi
AU - Harada, Daijiro
AU - Azuma, Koichi
AU - Ota, Keiichi
AU - Akamatsu, Hiroaki
AU - Goto, Koichi
AU - Horiike, Atsushi
AU - Kurata, Takayasu
AU - Nakagaki, Noriaki
AU - Nosaki, Kaname
AU - Iwama, Eiji
AU - Nakanishi, Yoichi
AU - Nishio, Kazuto
AU - Okamoto, Isamu
N1 - Funding Information:
This study was supported by Nippon Boehringer Ingelheim.
Publisher Copyright:
© AlphaMed Press 2019
PY - 2019
Y1 - 2019
N2 - Patients with non-small cell lung cancer (NSCLC) treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) eventually acquire resistance to these drugs. The identification of various resistance mechanisms for determination of subsequent treatment for these patients will require a method for simultaneous detection of multiple genetic alterations with high sensitivity. We performed cancer personalized profiling by deep sequencing (CAPP-Seq) with circulating tumor DNA obtained from patients with NSCLC who acquired resistance to first- or second-generation EGFR-TKIs. Plasma samples from 27 patients were analyzed, and 24 samples underwent CAPP-Seq successfully. Original activating EGFR mutations were detected in 23 patients, with the remaining patient showing MET amplification. With regard to known mechanisms of EGFR-TKI resistance, the T790M mutation of EGFR was detected in 17 of the 24 patients, MET amplification in 9 patients (6 of whom also harbored T790M), ERBB2 amplification in 2 patients (1 of whom also harbored T790M), and EGFR amplification in 4 patients (all of whom harbored T790M). Our results thus show that CAPP-Seq is applicable to clinical samples for the identification of multiple somatic mutations in circulating tumor DNA obtained from patients with NSCLC at the time of disease progression during treatment with first- or second-generation EGFR-TKIs. Patients positive for the T790M mutation of EGFR were also found to constitute a molecularly heterogeneous population. Key Points: CAPP-Seq is applicable to clinical samples for the identification of multiple somatic mutations. The T790M mutation of EGFR is associated with amplification of MET, ERBB2, or EGFR in NSCLC patients resistant to EGFR-TKIs. T790M-positive patients are molecularly heterogeneous, and genetic alterations coexisting with T790M may differ between patients treated with first-generation or second-generation EGFR-TKIs.
AB - Patients with non-small cell lung cancer (NSCLC) treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) eventually acquire resistance to these drugs. The identification of various resistance mechanisms for determination of subsequent treatment for these patients will require a method for simultaneous detection of multiple genetic alterations with high sensitivity. We performed cancer personalized profiling by deep sequencing (CAPP-Seq) with circulating tumor DNA obtained from patients with NSCLC who acquired resistance to first- or second-generation EGFR-TKIs. Plasma samples from 27 patients were analyzed, and 24 samples underwent CAPP-Seq successfully. Original activating EGFR mutations were detected in 23 patients, with the remaining patient showing MET amplification. With regard to known mechanisms of EGFR-TKI resistance, the T790M mutation of EGFR was detected in 17 of the 24 patients, MET amplification in 9 patients (6 of whom also harbored T790M), ERBB2 amplification in 2 patients (1 of whom also harbored T790M), and EGFR amplification in 4 patients (all of whom harbored T790M). Our results thus show that CAPP-Seq is applicable to clinical samples for the identification of multiple somatic mutations in circulating tumor DNA obtained from patients with NSCLC at the time of disease progression during treatment with first- or second-generation EGFR-TKIs. Patients positive for the T790M mutation of EGFR were also found to constitute a molecularly heterogeneous population. Key Points: CAPP-Seq is applicable to clinical samples for the identification of multiple somatic mutations. The T790M mutation of EGFR is associated with amplification of MET, ERBB2, or EGFR in NSCLC patients resistant to EGFR-TKIs. T790M-positive patients are molecularly heterogeneous, and genetic alterations coexisting with T790M may differ between patients treated with first-generation or second-generation EGFR-TKIs.
UR - http://www.scopus.com/inward/record.url?scp=85064909078&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064909078&partnerID=8YFLogxK
U2 - 10.1634/theoncologist.2019-0101
DO - 10.1634/theoncologist.2019-0101
M3 - Article
C2 - 31023862
AN - SCOPUS:85064909078
SN - 1083-7159
VL - 24
SP - 1022
EP - 1026
JO - Oncologist
JF - Oncologist
IS - 8
ER -