Global existence and decay of solutions for a quasi-linear dissipative plate equation

Yongqin Liu, Shuichi Kawashima

研究成果: Contribution to journalArticle査読

18 被引用数 (Scopus)

抄録

In this paper we focus on the initial value problem of a quasi-linear dissipative plate equation with arbitrary spatial dimensions (n ≥ 1). This equation verifies the decay property of the regularity-loss type. To overcome the difficulty caused by the regularity-loss property, we employ a special time-weighted (with negative exponent) L2 energy method combined with the optimal L2 decay estimates of lower-order derivatives of solutions. We obtain the global existence and optimal decay estimates of solutions under smallness and enough regularity assumptions on the initial data. Moreover, we show that the solution can be approximated by a simple-looking function, which is the fundamental solution of the corresponding fourth-order linear parabolic equation.

本文言語英語
ページ(範囲)591-614
ページ数24
ジャーナルJournal of Hyperbolic Differential Equations
8
3
DOI
出版ステータス出版済み - 9 2011

All Science Journal Classification (ASJC) codes

  • Analysis
  • Mathematics(all)

フィンガープリント 「Global existence and decay of solutions for a quasi-linear dissipative plate equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル