Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term

Yoshie Sugiyama, Hiroko Kunii

研究成果: Contribution to journalLetter査読

113 被引用数 (Scopus)

抄録

The following degenerate parabolic system modelling chemotaxis is considered:{A formula is presented} where m {greater than or slanted equal to} 1, q {greater than or slanted equal to} 2, τ = 0 or 1, and N {greater than or slanted equal to} 1. The aim of this paper is to prove the existence of a time global weak solution ( u, v) of (KS) with the L ( 0, ∞ ; L ( RN ) ) bound. Such a global bound is obtained in the case of (i) m > q - frac(2, N) for large initial data and (ii) 1 {less-than or slanted equal to} m {less-than or slanted equal to} q - frac(2, N) for small initial data. In the case of (ii), the decay properties of the solution ( u, v ) are also discussed.

本文言語英語
ページ(範囲)333-364
ページ数32
ジャーナルJournal of Differential Equations
227
1
DOI
出版ステータス出版済み - 8 1 2006

All Science Journal Classification (ASJC) codes

  • Analysis
  • Applied Mathematics

フィンガープリント 「Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル