大規模な三次元環境地図とRGB-Dカメラを用いた移動ロボットの広域位置同定

鄭 龍振, 倉爪 亮, 岩下 友美, 長谷川 勉

研究成果: Contribution to journalArticle査読

抄録

We proposed a global positioning technique in 3D environment using 3D geometrical map and a RGB-D camera based on a ND (Normal Distributions) voxel matching. Firstly, a 3D geometrical map represented by point-cloud is converted to ND voxels, and eigen ellipses are extracted. Meanwhile, ND voxels are also created from a range image captured by a RGB-D camera, and eigen ellipses and seven representative points are calculated in each ND voxel. For global localization, point-plane and plane-plane correspondences are tested and an optimum global position is determined using a particle filter. Experimental results show that the proposed technique is robust for the similarity in a 3D map and converges more stably than a standard maximum likelihood method using a beam model.
寄稿の翻訳タイトルGlobal Localization for Mobile Robot using Large-scale 3D Environmental Map and RGB-D Camera
本文言語日本語
ページ(範囲)896-906
ページ数11
ジャーナル日本ロボット学会誌
31
9
DOI
出版ステータス出版済み - 2013

フィンガープリント

「大規模な三次元環境地図とRGB-Dカメラを用いた移動ロボットの広域位置同定」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル