Ground states of the XY-model

Huzihiro Araki, Taku Matsui

研究成果: Contribution to journalArticle査読

38 被引用数 (Scopus)

抄録

Ground states of the X Y-model on infinite one-dimensional lattice, specified by the Hamiltonian {Mathematical expression} with real parameters J≠0, γ and λ, are all determined. The model has a unique ground state for |λ|≧1, as well as for γ=0, |λ|<1; it has two pure ground states (with a broken symmetry relative to the 180° rotation of all spins around the z-axis) for |λ|<1, γ≠0, except for the known Ising case of λ=0, |λ|=1, for which there are two additional irreducible representations (soliton sectors) with infinitely many vectors giving rise to ground states. The ergodic property of ground states under the time evolution is proved for the uniqueness region of parameters, while it is shown to fail (even if the pure ground states are considered) in the case of non-uniqueness region of parameters.

本文言語英語
ページ(範囲)213-245
ページ数33
ジャーナルCommunications in Mathematical Physics
101
2
DOI
出版ステータス出版済み - 6 1 1985
外部発表はい

All Science Journal Classification (ASJC) codes

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Ground states of the XY-model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル