TY - JOUR
T1 - Gut dysbiosis and bacterial translocation in the aneurysmal wall and blood in patients with abdominal aortic aneurysm
AU - Nakayama, Ken
AU - Furuyama, Tadashi
AU - Matsubara, Yutaka
AU - Morisaki, Koichi
AU - Onohara, Toshihiro
AU - Ikeda, Tetsuo
AU - Yoshizumi, Tomoharu
N1 - Funding Information:
Funding: The authors received no specific funding for this work.
Publisher Copyright:
© 2022 Public Library of Science. All rights reserved.
PY - 2022/12
Y1 - 2022/12
N2 - Inflammation plays a part in the development of abdominal aortic aneurysm (AAA), and the gut microbiota affects host inflammation by bacterial translocation. The relationship between abdominal aortic aneurysm and the gut microbiota remains unknown. This study aimed to detect bacterial translocation in the aneurysmal wall and blood of patients with abdominal aortic aneurysm, and to investigate the effect of the gut microbiota on abdominal aortic aneurysm. We investigated 30 patients with abdominal aortic aneurysm from 2017 to 2019. We analysed the aneurysmal wall and blood using highly sensitive reverse transcription-quantitative polymerase chain reaction, and the gut microbiota was investigated using next-generation sequencing. In the 30 patients, bacteria were detected by reverse transcription-quantitative polymerase chain reaction in 19 blood samples (detection rate, 63%) and in 11 aneurysmal wall samples (detection rate, 37%). In the gut microbiota analysis, the Firmicutes/Bacteroidetes ratio was increased. The neutrophil-lymphocyte ratio was higher (2.94 ± 1.77 vs 1.96 ± 0.61, P < 0.05) and the lymphocyte-monocyte ratio was lower (4.02 ± 1.25 vs 5.86 ± 1.38, P < 0.01) in the bacterial carrier group than in the bacterial non-carrier group in blood samples. The volume of intraluminal thrombus was significantly higher in the bacterial carrier group than in the bacterial non-carrier group in aneurysmal wall samples (64.0% vs 34.7%, P < 0.05). We confirmed gut dysbiosis and bacterial translocation to the blood and aneurysmal wall in patients with abdominal aortic aneurysm. There appears to be a relationship between the gut microbiota and abdominal aortic aneurysm.
AB - Inflammation plays a part in the development of abdominal aortic aneurysm (AAA), and the gut microbiota affects host inflammation by bacterial translocation. The relationship between abdominal aortic aneurysm and the gut microbiota remains unknown. This study aimed to detect bacterial translocation in the aneurysmal wall and blood of patients with abdominal aortic aneurysm, and to investigate the effect of the gut microbiota on abdominal aortic aneurysm. We investigated 30 patients with abdominal aortic aneurysm from 2017 to 2019. We analysed the aneurysmal wall and blood using highly sensitive reverse transcription-quantitative polymerase chain reaction, and the gut microbiota was investigated using next-generation sequencing. In the 30 patients, bacteria were detected by reverse transcription-quantitative polymerase chain reaction in 19 blood samples (detection rate, 63%) and in 11 aneurysmal wall samples (detection rate, 37%). In the gut microbiota analysis, the Firmicutes/Bacteroidetes ratio was increased. The neutrophil-lymphocyte ratio was higher (2.94 ± 1.77 vs 1.96 ± 0.61, P < 0.05) and the lymphocyte-monocyte ratio was lower (4.02 ± 1.25 vs 5.86 ± 1.38, P < 0.01) in the bacterial carrier group than in the bacterial non-carrier group in blood samples. The volume of intraluminal thrombus was significantly higher in the bacterial carrier group than in the bacterial non-carrier group in aneurysmal wall samples (64.0% vs 34.7%, P < 0.05). We confirmed gut dysbiosis and bacterial translocation to the blood and aneurysmal wall in patients with abdominal aortic aneurysm. There appears to be a relationship between the gut microbiota and abdominal aortic aneurysm.
UR - http://www.scopus.com/inward/record.url?scp=85144102454&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85144102454&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0278995
DO - 10.1371/journal.pone.0278995
M3 - Article
C2 - 36516156
AN - SCOPUS:85144102454
SN - 1932-6203
VL - 17
JO - PLoS One
JF - PLoS One
IS - 12 December
M1 - e0278995
ER -