TY - JOUR
T1 - HGF/NK4 inhibited VEGF-induced angiogenesis in in vitro cultured endothelial cells and in vivo rabbit model
AU - Nakabayashi, M.
AU - Morishita, R.
AU - Nakagami, H.
AU - Kuba, K.
AU - Matsumoto, K.
AU - Nakamura, T.
AU - Tano, Y.
AU - Kaneda, Y.
N1 - Funding Information:
Acknowledgements. This work was partially supported by a
PY - 2003/1/1
Y1 - 2003/1/1
N2 - Aims/hypothesis. As vascular endothelial growth factor (VEGF) plays a pivotal role in the development of diabetic retinopathy, inhibition of angiogenesis induced by VEGF is crucial to treat diabetic retinopathy. HGF (hepatocyte growth factor)/NK4, containing the N-terminal hairpin domain and the four subsequent kringle domains of HGF, is considered as a specific antagonist for HGF. Our aim was to explore the inhibitory effects of HGF/NK4 on angiogenesis induced by VEGF. Methods. To analyze the in vivo angiogenesis, we used rabbit corneal micropocket assay. Proliferation and migration of human endothelial cells, expression of ets-1, an essential transcription factor for angiogenesis, and the phosphorylation of extracellular signal-regulated kinase (ERK) was examined with or without HGF/NK4. Results. Using corneal micropocket assay, in vivo administration of HGF/NK4 inhibited angiogenesis induced by VEGF. HGF/NK4 inhibited proliferation and migration of human endothelial cells induced by VEGF in a dose-dependent manner. Interestingly, VEGF-mediated phosphorylation of ERK was significantly attenuated by HGF/NK4. Of importance, HGF/NK4 attenuated the increase in ets-1 protein stimulated by VEGF. Nevertheless, HGF/NK4 did not affect phosphorylation of VEGF receptor-2 [kinase domain region (KDR)/foetal liver kinase (Flk)-1]. Although tyrosine phosphatase inhibitor (Na3VO4), or okadaic acid, serine-threonin kinase inhibitor, did not prevent the inhibition of ERK phosphorylation by HGF/NK4, co-incubation of HGF/NK4 with VEGF significantly diminished mitogen-activated protein (MAP) ERK kinase (MEK) phosphorylation (p<0.01). Conclusions/interpretation. Overall, HGF/NK4 inhibited angiogenesis induced by VEGF through inhibition of phosphorylation of ERK and ets-1 expression in in vitro cultured endothelial cells and in vivo rabbit model.
AB - Aims/hypothesis. As vascular endothelial growth factor (VEGF) plays a pivotal role in the development of diabetic retinopathy, inhibition of angiogenesis induced by VEGF is crucial to treat diabetic retinopathy. HGF (hepatocyte growth factor)/NK4, containing the N-terminal hairpin domain and the four subsequent kringle domains of HGF, is considered as a specific antagonist for HGF. Our aim was to explore the inhibitory effects of HGF/NK4 on angiogenesis induced by VEGF. Methods. To analyze the in vivo angiogenesis, we used rabbit corneal micropocket assay. Proliferation and migration of human endothelial cells, expression of ets-1, an essential transcription factor for angiogenesis, and the phosphorylation of extracellular signal-regulated kinase (ERK) was examined with or without HGF/NK4. Results. Using corneal micropocket assay, in vivo administration of HGF/NK4 inhibited angiogenesis induced by VEGF. HGF/NK4 inhibited proliferation and migration of human endothelial cells induced by VEGF in a dose-dependent manner. Interestingly, VEGF-mediated phosphorylation of ERK was significantly attenuated by HGF/NK4. Of importance, HGF/NK4 attenuated the increase in ets-1 protein stimulated by VEGF. Nevertheless, HGF/NK4 did not affect phosphorylation of VEGF receptor-2 [kinase domain region (KDR)/foetal liver kinase (Flk)-1]. Although tyrosine phosphatase inhibitor (Na3VO4), or okadaic acid, serine-threonin kinase inhibitor, did not prevent the inhibition of ERK phosphorylation by HGF/NK4, co-incubation of HGF/NK4 with VEGF significantly diminished mitogen-activated protein (MAP) ERK kinase (MEK) phosphorylation (p<0.01). Conclusions/interpretation. Overall, HGF/NK4 inhibited angiogenesis induced by VEGF through inhibition of phosphorylation of ERK and ets-1 expression in in vitro cultured endothelial cells and in vivo rabbit model.
UR - http://www.scopus.com/inward/record.url?scp=0037286698&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0037286698&partnerID=8YFLogxK
U2 - 10.1007/s00125-002-0954-y
DO - 10.1007/s00125-002-0954-y
M3 - Article
C2 - 12637990
AN - SCOPUS:0037286698
SN - 0012-186X
VL - 46
SP - 115
EP - 123
JO - Diabetologia
JF - Diabetologia
IS - 1
ER -