High-discrepancy sequences

Shu Tezuka

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

First, it is pointed out that the uniform distribution of points in [0, 1]d is not always a necessary condition for every function in a proper subset of the class of all Riemann integrable functions to have the arithmetic mean of function values at the points converging to its integral over [0, 1]d as the number of points goes to infinity. We introduce a formal definition of the d-dimensional high-discrepancy sequences, which are not uniformly distributed in [0, 1]d, and present motivation for the application of these sequences to high-dimensional numerical integration. Then, we prove that there exist non-uniform (∞, d)-sequences which provide the convergence rate O(N-1) for the integration of a certain class of d-dimensional Walsh function series, where N is the number of points.

本文言語英語
ページ(範囲)431-441
ページ数11
ジャーナルKyushu Journal of Mathematics
61
2
DOI
出版ステータス出版済み - 2007

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

フィンガープリント 「High-discrepancy sequences」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル