High-speed and long-term wavelength stabilization of tunable distributed amplification distributed feedback laser after laser activation with feedforward and feedback control

Hiroki Fukuda, Kenta Yamaguchi, Takeshi Kuboki, Kazutoshi Kato

研究成果: ジャーナルへの寄稿記事

抄録

To manage recent exponentially increasing data traffic, optical-to-optical burst switching and packet switching systems have been attracting much attention because they do not require an optical-to-electrical and an electrical-to-optical conversions. These systems require high-speed optical switches with a large number of input/output ports. As a candidate for the optical switch, we have focused on the combination of wavelength tunable lasers and an arrayed waveguide grating router, and studied the tunable distributed amplification distributed feedback (TDA-DFB) lasers for the optical switch. Previously, our derived feedforward current control achieved high-speed wavelength switching at a single laser in six-arrayed TDA-DFB lasers. For larger-scale optical switching, wavelength switching from a laser to another in an array is required to cover a wide tunable range. In this study, we develop a novel current control model and successfully stabilize the wavelength immediately after laser activation, which would enable high-speed switching between different lasers. Furthermore, we demonstrate the combination of feedforward and feedback controls for high-speed switching with long-term stability.
元の言語英語
ページ(範囲)08PD04
ジャーナルJapanese Journal of Applied Physics, Part 2: Letters
57
発行部数8
DOI
出版物ステータス出版済み - 7 20 2018

Fingerprint

feedforward control
distributed feedback lasers
feedback control
stabilization
high speed
activation
wavelengths
lasers
switches
packet switching
optical switching
tunable lasers
traffic
bursts
gratings
waveguides
output

これを引用

@article{a9da92c690b6440189ec3d170e5153f6,
title = "High-speed and long-term wavelength stabilization of tunable distributed amplification distributed feedback laser after laser activation with feedforward and feedback control",
abstract = "To manage recent exponentially increasing data traffic, optical-to-optical burst switching and packet switching systems have been attracting much attention because they do not require an optical-to-electrical and an electrical-to-optical conversions. These systems require high-speed optical switches with a large number of input/output ports. As a candidate for the optical switch, we have focused on the combination of wavelength tunable lasers and an arrayed waveguide grating router, and studied the tunable distributed amplification distributed feedback (TDA-DFB) lasers for the optical switch. Previously, our derived feedforward current control achieved high-speed wavelength switching at a single laser in six-arrayed TDA-DFB lasers. For larger-scale optical switching, wavelength switching from a laser to another in an array is required to cover a wide tunable range. In this study, we develop a novel current control model and successfully stabilize the wavelength immediately after laser activation, which would enable high-speed switching between different lasers. Furthermore, we demonstrate the combination of feedforward and feedback controls for high-speed switching with long-term stability.",
author = "Hiroki Fukuda and Kenta Yamaguchi and Takeshi Kuboki and Kazutoshi Kato",
year = "2018",
month = "7",
day = "20",
doi = "10.7567/JJAP.57.08PD04",
language = "English",
volume = "57",
pages = "08PD04",
journal = "Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes",
issn = "0021-4922",
publisher = "Institute of Physics",
number = "8",

}

TY - JOUR

T1 - High-speed and long-term wavelength stabilization of tunable distributed amplification distributed feedback laser after laser activation with feedforward and feedback control

AU - Fukuda, Hiroki

AU - Yamaguchi, Kenta

AU - Kuboki, Takeshi

AU - Kato, Kazutoshi

PY - 2018/7/20

Y1 - 2018/7/20

N2 - To manage recent exponentially increasing data traffic, optical-to-optical burst switching and packet switching systems have been attracting much attention because they do not require an optical-to-electrical and an electrical-to-optical conversions. These systems require high-speed optical switches with a large number of input/output ports. As a candidate for the optical switch, we have focused on the combination of wavelength tunable lasers and an arrayed waveguide grating router, and studied the tunable distributed amplification distributed feedback (TDA-DFB) lasers for the optical switch. Previously, our derived feedforward current control achieved high-speed wavelength switching at a single laser in six-arrayed TDA-DFB lasers. For larger-scale optical switching, wavelength switching from a laser to another in an array is required to cover a wide tunable range. In this study, we develop a novel current control model and successfully stabilize the wavelength immediately after laser activation, which would enable high-speed switching between different lasers. Furthermore, we demonstrate the combination of feedforward and feedback controls for high-speed switching with long-term stability.

AB - To manage recent exponentially increasing data traffic, optical-to-optical burst switching and packet switching systems have been attracting much attention because they do not require an optical-to-electrical and an electrical-to-optical conversions. These systems require high-speed optical switches with a large number of input/output ports. As a candidate for the optical switch, we have focused on the combination of wavelength tunable lasers and an arrayed waveguide grating router, and studied the tunable distributed amplification distributed feedback (TDA-DFB) lasers for the optical switch. Previously, our derived feedforward current control achieved high-speed wavelength switching at a single laser in six-arrayed TDA-DFB lasers. For larger-scale optical switching, wavelength switching from a laser to another in an array is required to cover a wide tunable range. In this study, we develop a novel current control model and successfully stabilize the wavelength immediately after laser activation, which would enable high-speed switching between different lasers. Furthermore, we demonstrate the combination of feedforward and feedback controls for high-speed switching with long-term stability.

U2 - 10.7567/JJAP.57.08PD04

DO - 10.7567/JJAP.57.08PD04

M3 - Article

VL - 57

SP - 08PD04

JO - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes

JF - Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes

SN - 0021-4922

IS - 8

ER -