Highly accurate solution of the axial dispersion model expressed in S-system canonical form by Taylor series method

研究成果: Contribution to journalArticle査読

22 被引用数 (Scopus)

抄録

A numerical method for solving an axial dispersion model (two-point boundary value problem) with extremely high-order accuracy is presented. In this method, one first recasts fundamental differential equations into S-system (synergistic and saturable system) canonical form and then solves the resulting set of simultaneous first-order differential equations by the shooting method combined with a variable-order, variable-step Taylor series method. As a result, it is found that over wide ranges of systemic parameters (Peclet number, dimensionless kinetic constant, and reaction order), this method promises numerical solutions with the superhigh-order accuracy that is comparable to the machine accuracy of the computer used. The advantage of the numerical method is also discussed.

本文言語英語
ページ(範囲)175-183
ページ数9
ジャーナルChemical Engineering Journal
83
3
DOI
出版ステータス出版済み - 8 15 2001
外部発表はい

All Science Journal Classification (ASJC) codes

  • 化学 (全般)
  • 環境化学
  • 化学工学(全般)
  • 産業および生産工学

フィンガープリント

「Highly accurate solution of the axial dispersion model expressed in S-system canonical form by Taylor series method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル