Highly regenerable and storageable all-chemical based PEG-immunosensor chip for SPR detection of ppt levels of fragrant compounds from beverage samples

K. Vengatajalabathy Gobi, Kiyoshi Matsumoto, Kiyoshi Toko, Norio Miura

研究成果: ジャーナルへの寄稿記事

7 引用 (Scopus)

抜粋

Simple, automated and cost-effective sensor systems intended for detection of low-molecular-weight (LMW) fragrant compounds are indispensable at automated, bottle-filling production lines of food and beverage industries. Here, we report our investigations on the development of a highly regenerable and storageable surface plasmon resonance (SPR)-based biosensor for detection of trace amounts of benzaldehyde (BZ), a characteristic fragrant compound of peach products. The sensing surface was fabricated by self-assembling of long-chain polyethyleneglycol(PEG)-dialkanethiols on thin Au-films and by followed covalent-binding of a BZ analog on the self-assembly of PEG-dialkanethiols. The all-chemical based BZ-bound PEG-monolayer chip shows specific binding affinity toward anti-BZ antibody (BZ-Ab). The principle of indirect competitive immunoassay, promising highly sensitive and consistent detection of small molecular analytes, has been applied, wherein immunospecific binding of BZ-Ab onto the BZ-bound sensor surface is inhibited by analyte BZ present in test sample. The immunosensor exhibited excellent sensitivity for BZ detection over a wide concentration range of 0.1-80 ng/ml (ppb). The BZ-bound monolayer surface was highly regenerable and storageable for repeated use of a same sensor chip. The assay reproducibility was proved through sequential multiple analysis of the same sensor chip for more than 50 regeneration cycles. Sensitivity was enhanced further by an add-on strategy involving anti-(rabbit IgG)-functionalized Au nanoparticles (nAu-Ab), with which the sensor-signal is enhanced by about 15-18 times and the amount of BZ-Ab antibody required for an analysis could be reduced to one-tenth. With the enhancement technique, detection of as low as 7 pg/ml (ppt) BZ directly from beverage samples has been demonstrated.

元の言語英語
ページ(範囲)225-233
ページ数9
ジャーナルSensing and Instrumentation for Food Quality and Safety
2
発行部数4
DOI
出版物ステータス出版済み - 12 5 2008

All Science Journal Classification (ASJC) codes

  • Chemical Engineering(all)
  • Safety, Risk, Reliability and Quality
  • Industrial and Manufacturing Engineering

フィンガープリント Highly regenerable and storageable all-chemical based PEG-immunosensor chip for SPR detection of ppt levels of fragrant compounds from beverage samples' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用