Homotopical interpretation of link invariants from finite quandles

Takefumi Nosaka

研究成果: ジャーナルへの寄稿学術誌査読

4 被引用数 (Scopus)

抄録

This paper demonstrates a topological meaning of quandle cocycle invariants of links with respect to finite connected quandles X, from a perspective of homotopy theory: Specifically, for any prime ℓ which does not divide the type of X, the ℓ-torsion of this invariants is equal to a sum of the coloring polynomial and a Z-equivariant part of the Dijkgraaf-Witten invariant of a cyclic branched covering space. Moreover, our homotopical approach involves applications of computing some third homology groups and second homotopy groups of the classifying spaces of quandles, from results of group cohomology.

本文言語英語
ページ(範囲)1-30
ページ数30
ジャーナルTopology and its Applications
193
DOI
出版ステータス出版済み - 9月 5 2015

!!!All Science Journal Classification (ASJC) codes

  • 幾何学とトポロジー

フィンガープリント

「Homotopical interpretation of link invariants from finite quandles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル