How many vertices does a random walk miss in a network with moderately increasing the number of vertices?

Shuji Kijima, Nobutaka Shimizu, Takeharu Shiraga

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

Real networks are often dynamic. In response to it, analyses of algorithms on dynamic networks attract more and more attention in network science and engineering. Random walks on dynamic graphs also have been investigated actively in more than a decade, where in most cases the edge set changes but the vertex set is static. The vertex sets are also dynamic in many real networks. Motivated by a new technology of the analysis of random walks on dynamic graphs, this paper introduces a simple model of graphs with an increasing number of vertices and presents an analysis of random walks associated with the cover time on such graphs. In particular, we reveal that a random walk asymptotically covers the vertices all but a constant number if the vertex set grows moderately.

本文言語英語
ホスト出版物のタイトルACM-SIAM Symposium on Discrete Algorithms, SODA 2021
編集者Daniel Marx
出版社Association for Computing Machinery
ページ106-122
ページ数17
ISBN(電子版)9781611976465
出版ステータス出版済み - 2021
イベント32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021 - Alexandria, Virtual, 米国
継続期間: 1 10 20211 13 2021

出版物シリーズ

名前Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

会議

会議32nd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2021
国/地域米国
CityAlexandria, Virtual
Period1/10/211/13/21

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 数学 (全般)

フィンガープリント

「How many vertices does a random walk miss in a network with moderately increasing the number of vertices?」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル