How to collect balls moving in the Euclidean plane

Yuichi Asahiro, Takashi Horiyama, Kazuhisa Makino, Hirotaka Ono, Toshinori Sakuma, Masafumi Yamashita

研究成果: Contribution to journalArticle査読

3 被引用数 (Scopus)

抄録

In this paper, we study how to collect n balls moving with a fixed constant velocity in the Euclidean plane by k robots moving on straight track-lines through the origin. Since all the balls might not be caught by robots, differently from Moving-target TSP, we consider the following 3 problems in various situations: (i) deciding if k robots can collect all n balls; (ii) maximizing the number of the balls collected by k robots; (iii) minimizing the number of the robots to collect all n balls. The situations considered in this paper contain the cases in which track-lines are given (or not), and track-lines are identical (or not). For all problems and situations, we provide polynomial time algorithms or proofs of intractability, which clarify the tractability-intractability frontier in the ball collecting problems in the Euclidean plane.

本文言語英語
ページ(範囲)2247-2262
ページ数16
ジャーナルDiscrete Applied Mathematics
154
16
DOI
出版ステータス出版済み - 11 1 2006

All Science Journal Classification (ASJC) codes

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「How to collect balls moving in the Euclidean plane」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル