How to collect balls moving in the euclidean plane

Yuichi Asahiro, Takashi Horiyama, Kazuhisa Makino, Hirotaka Ono, Toshinori Sakuma, Masafumi Yamashita

研究成果: ジャーナルへの寄稿会議記事査読

9 被引用数 (Scopus)

抄録

In this paper, we study how to collect n balls moving with constant velocities in the Euclidean plane by k robots moving on straight track-lines through the origin. Since all the balls might not be caught by robots, differently from Moving-Target TSP, we consider the following 3 problems in various situations: (i) deciding if k robots can collect all n balls, (ii) maximizing the number of the balls collected by k robots, and (iii) minimizing the number of the robots to collect all n balls. The situations considered here contain the cases in which track-lines are given (or not), and track-lines are identical (or not). For all problems and situations, we provide polynomial time algorithms or proofs of intractability, which clarify the tractability- intractability frontier in the ball collecting problems in the Euclidean plane.

本文言語英語
ページ(範囲)229-245
ページ数17
ジャーナルElectronic Notes in Theoretical Computer Science
91
DOI
出版ステータス出版済み - 2月 16 2004
イベントProceedings of Computing: The Australasian Theory Symposium (CATS) - Dunedin, ニュージ―ランド
継続期間: 1月 19 20041月 20 2004

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「How to collect balls moving in the euclidean plane」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル