Hydrogen incorporation into metal deposits forming from tungsten or stainless steel by sputtering under mixed hydrogen and argon plasma at elevated temperature

Kazunari Katayama, Yasuhito Ohnishi, Takuya Honda, Keiichiro Uehara, Satoshi Fukada, Masabumi Nishikawa, Naoko Ashikawa, Tatsuhiko Uda

研究成果: ジャーナルへの寄稿記事

3 引用 (Scopus)


The influence of the deposition conditions on hydrogen incorporation into metal deposits was investigated by exposing tungsten (W) or stainless steel (SS) to mixed hydrogen and argon plasma. The sputtering yield of SS was lower than expected from a sputtering yield of iron and was close to that of Mo. The hydrogen incorporated into the W deposits was released by heating up to 600 °C. On the other hand, the release of hydrogen from the SS deposits continued until 1000 °C. The H/W ratio in the W deposits decreased with decreasing the H/W flux ratio toward the growing surface and increasing substrate temperature. The H/W ratio in the W deposit formed at 500 °C was 0.005. The H/Metal ratio in the SS deposits was varied in the range between 0.03 and 0.3 depending on the target bias but the influences of the H/Metal flux ratio and substrate temperature were not observed.

ジャーナルJournal of Nuclear Materials
出版物ステータス出版済み - 1 1 2013


All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Materials Science(all)