Hydrogen isotope dissolution and release behavior in Y-doped BaCeO3

M. Khalid Hossain, Tadahiro Iwasa, Kenichi Hashizume

研究成果: ジャーナルへの寄稿学術誌査読

10 被引用数 (Scopus)


Oxides having a perovskite structure are known to exhibit good proton conductivity in a high-temperature region, which makes them potential candidates in the tritium recovery and purification system of the electrochemical devices of fusion reactors such as hydrogen pumps, hydrogen sensors, and tritium monitoring systems. But the dissolution of hydrogen into the proton conductor and its release behavior is not well known yet. In this study, the dissolution and release behavior of hydrogen was investigated in BaCe0.9Y0.1O3−α proton conductor by exposing deuterium gas (D2) and heavy water vapor (D2O) at 600 or 700°C for 5 h. The dissolved deuterium amount in the sample was measured using a temperature-programmed desorption analysis (TDS) method. The relationship between the amount of deuterium dissolved in the sample with the exposure pressure was also investigated. At room temperature (RT), the diffusivity of hydrogen (e.g., deuterium) was calculated from the change of the amount of residual hydrogen in the exposed sample due to the change of storage time. The Tritium Migration Analysis Program, Version 4 (TMAP4) simulation code was used to simulate and compare the experimental value of the obtained diffusivity. Although diffusivity at RT has not been reported in the past, the diffusivity is close to the extrapolation value of the literature data. From the comparison of this research results with literature, it may consider that the dominant diffusion mechanism does not change regardless of the temperature range.

ジャーナルJournal of the American Ceramic Society
出版ステータス出版済み - 12月 2021

!!!All Science Journal Classification (ASJC) codes

  • セラミックおよび複合材料
  • 材料化学


「Hydrogen isotope dissolution and release behavior in Y-doped BaCeO3」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。