TY - JOUR
T1 - Identification of human erythroid lineage-committed progenitors
AU - Mori, Yasuo
AU - Akashi, Koichi
AU - Weissman, Irving L.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Elucidating the developmental pathway leading to erythrocytes and being able to isolate their progenitors is crucial to understanding and treating disorders of red cell imbalance such as anemia, myelodysplastic syndrome, and polycythemia vera. Endoglin (CD105) is a key marker for purifying mouse erythroid lineage-committed progenitors (EPs) from bone marrow. Herein, we show that human EPs can also be isolated from adult bone marrow. We identified three subfractions that possessed different expression patterns of CD105 and CD71 within the previously defined human megakaryocyte/erythrocyte progenitor (hMEP; Lineage-CD34(+)CD38(+)IL-3Rα(-)CD45RA(-)) population. Both CD71(-)CD105(-) and CD71(+)CD105(-) MEPs, at least in vitro, retained bipotency for the megakaryocyte (MegK) and erythrocyte (E) lineages, although the latter sub-population had a differentiation potential skewed toward the E-lineage. Notably, the differentiation output of the CD71(+)CD105(+) subset of cells within the MEP population was completely restricted to the E-lineage with the loss of MegK potential; thus, we termed CD71(+)CD105(-) MEPs and CD71(+)CD105(+) cells as E-biased MEPs (E-MEPs) and EPs, respectively. These previously unclassified populations may facilitate understanding of the molecular mechanisms governing human erythroid development and serve as potential therapeutic targets in disorders of the erythroid lineage.
AB - Elucidating the developmental pathway leading to erythrocytes and being able to isolate their progenitors is crucial to understanding and treating disorders of red cell imbalance such as anemia, myelodysplastic syndrome, and polycythemia vera. Endoglin (CD105) is a key marker for purifying mouse erythroid lineage-committed progenitors (EPs) from bone marrow. Herein, we show that human EPs can also be isolated from adult bone marrow. We identified three subfractions that possessed different expression patterns of CD105 and CD71 within the previously defined human megakaryocyte/erythrocyte progenitor (hMEP; Lineage-CD34(+)CD38(+)IL-3Rα(-)CD45RA(-)) population. Both CD71(-)CD105(-) and CD71(+)CD105(-) MEPs, at least in vitro, retained bipotency for the megakaryocyte (MegK) and erythrocyte (E) lineages, although the latter sub-population had a differentiation potential skewed toward the E-lineage. Notably, the differentiation output of the CD71(+)CD105(+) subset of cells within the MEP population was completely restricted to the E-lineage with the loss of MegK potential; thus, we termed CD71(+)CD105(-) MEPs and CD71(+)CD105(+) cells as E-biased MEPs (E-MEPs) and EPs, respectively. These previously unclassified populations may facilitate understanding of the molecular mechanisms governing human erythroid development and serve as potential therapeutic targets in disorders of the erythroid lineage.
UR - http://www.scopus.com/inward/record.url?scp=85020374369&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85020374369&partnerID=8YFLogxK
U2 - 10.11406/rinketsu.57.585
DO - 10.11406/rinketsu.57.585
M3 - Article
C2 - 27263782
AN - SCOPUS:85020374369
SN - 0485-1439
VL - 57
SP - 585
EP - 591
JO - [Rinsho ketsueki] The Japanese journal of clinical hematology
JF - [Rinsho ketsueki] The Japanese journal of clinical hematology
IS - 5
ER -