Identification of influential uncertain parameters from monte carlo simulation data

Toshikazu Motoda, Yoshikazu Miyazawa

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

Monte Carlo simulation is powerful and practical tool for evaluating non-linear systems. Its advantage is that it allows the influences of various combinations of uncertainties to be taken into account. When the result of a Monte Carlo simulation is unsatisfactory, further investigations of both the system model and control system are necessary and it is important to identify those influential uncertain parameters that significantly affect the simulation result. However, this is usually difficult because multiple uncertain parameters are incorporated into a simulation simultaneously. This paper presents a method of identifying influential parameters in Monte Carlo simulations using test input vectors of uncertain parameters and a statistical test. The method is applied to the simulation results of an unmanned flight system, demonstrating its effectiveness in a practical application.

本文言語英語
ホスト出版物のタイトルAIAA Guidance, Navigation, and Control Conference and Exhibit
出版ステータス出版済み - 12 1 2001
イベントAIAA Guidance, Navigation, and Control Conference and Exhibit 2001 - Montreal, QC, カナダ
継続期間: 8 6 20018 9 2001

出版物シリーズ

名前AIAA Guidance, Navigation, and Control Conference and Exhibit

その他

その他AIAA Guidance, Navigation, and Control Conference and Exhibit 2001
Countryカナダ
CityMontreal, QC
Period8/6/018/9/01

All Science Journal Classification (ASJC) codes

  • Aerospace Engineering
  • Control and Systems Engineering
  • Electrical and Electronic Engineering

フィンガープリント 「Identification of influential uncertain parameters from monte carlo simulation data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル