Identify solar panel defects by using differences between solar panels

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

抄録

Automatic solar panel inspection systems are essential to maintain power generation efficiency and reduce the cost. Thermal images generated by thermographic cameras can be used for solar panel fault diagnosis because defective panels show abnormal temperature. However, it is difficult to identify an anomaly from a single panel image when similar temperature features appear in normal panels and abnormal panels. In this paper, we propose a different feature based method to identify defective solar panels in thermal images. To determine abnormal panel from input panel images, we apply a voting strategy by using the prediction results of subtraction network. In our experiments, we construct two datasets to evaluate our method: the clean panels dataset which is constructed by manually extracted panel images and the noise containing dataset which is consisting of panel images extracted by the automatic panel extraction method. Our method achieves more than 90% classification accuracy on both clean panels dataset and noise containing dataset.

本文言語英語
ホスト出版物のタイトルFifteenth International Conference on Quality Control by Artificial Vision
編集者Kenji Terada, Akio Nakamura, Takashi Komuro, Tsuyoshi Shimizu
出版社SPIE
ISBN(電子版)9781510644267
DOI
出版ステータス出版済み - 2021
イベント15th International Conference on Quality Control by Artificial Vision - Tokushima, Virtual, 日本
継続期間: 5月 12 20215月 14 2021

出版物シリーズ

名前Proceedings of SPIE - The International Society for Optical Engineering
11794
ISSN(印刷版)0277-786X
ISSN(電子版)1996-756X

会議

会議15th International Conference on Quality Control by Artificial Vision
国/地域日本
CityTokushima, Virtual
Period5/12/215/14/21

!!!All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学

フィンガープリント

「Identify solar panel defects by using differences between solar panels」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル