Immersed n-manifolds in R2n and the double points of their generic projections into R2n-1

Osamu Saeki, Kazuhiro Sakuma

研究成果: ジャーナルへの寄稿学術誌査読

7 被引用数 (Scopus)

抄録

We give two congruence formulas concerning the number of non-trivial double point circles and arcs of a smooth map with generic singularities - the Whitney umbrellas - of an n-manifold into R2n-1, which generalize the formulas by Sziics for an immersion with normal crossings. Then they are applied to give a new geometric proof of the congruence formula due to Mahowald and Lannes concerning the normal Euler number of an immersed n-manifold in R2n. We also study generic projections of an embedded nmanifold in R2n into R2n-1 and prove an elimination theorem of Whitney umbrella points of opposite signs, which is a direct generalization of a recent result of Carter and Saito concerning embedded surfaces in R4. The problem of lifting a map into R2n-1 to an embedding into R2n is also studied.

本文言語英語
ページ(範囲)2585-2606
ページ数22
ジャーナルTransactions of the American Mathematical Society
348
7
出版ステータス出版済み - 1996
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Immersed n-manifolds in R2n and the double points of their generic projections into R2n-1」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル