抄録
Pellet injection has been used as a primary fuelling scheme in the Large Helical Device. With pellet injection, the operational region of NBI plasmas has been extended to higher densities while maintaining a favourable dependence of energy confinement on density, and several important values, such as plasma stored energy of 0.88 MJ, energy confinement time of 0.3 s, β of 2.4% at 1.3 T and density of 1.1 × 1020 m-3, have been achieved. These parameters cannot be attained by gas puffing. Ablation and the subsequent behaviour of the plasma have been investigated. The measured pellet penetration depth estimated on the basis of the duration of the Hα emission is shallower than the depth predicted from the simple neutral gas shielding (NGS) model. It can be explained by the NGS model with inclusion of the effect of fast ions on the ablation. Just after ablation, the redistribution of the ablated pellet mass was observed on a short timescale (∼400 ms). The redistribution causes shallow deposition and low fuelling efficiency.
本文言語 | 英語 |
---|---|
ページ(範囲) | 381-386 |
ページ数 | 6 |
ジャーナル | Nuclear Fusion |
巻 | 41 |
号 | 4 |
DOI | |
出版ステータス | 出版済み - 4月 2001 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 核物理学および高エネルギー物理学
- 凝縮系物理学