Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum

Masanori Honsho, Fabian Dorninger, Yuichi Abe, Daiki Setoyama, Ryohei Ohgi, Takeshi Uchiumi, Dongchon Kang, Johannes Berger, Yukio Fujiki

研究成果: Contribution to journalArticle査読

6 被引用数 (Scopus)

抄録

Synthesis of ethanolamine plasmalogen (PlsEtn) is regulated by modulating the stability of fatty acyl-CoA reductase 1 (Far1) on peroxisomal membrane, a rate-limiting enzyme in plasmalogen synthesis. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis in cultured cells by altering the stability of squalene epoxidase (SQLE). However, regulation of PlsEtn synthesis and physiological consequences of plasmalogen homeostasis in tissues remain unknown. In the present study, we found that the protein but not the transcription level of Far1 in the cerebellum of the Pex14 mutant mouse expressing Pex14p lacking its C-terminal region (Pex14ΔC/ΔC) is higher than that from wild-type mouse, suggesting that Far1 is stabilized by the lowered level of PlsEtn. The protein level of SQLE was increased, whereas the transcriptional activity of the liver X receptors (LXRs), ligand-activated transcription factors of the nuclear receptor superfamily, is lowered in the cerebellum of Pex14ΔC/ΔC and the mice deficient in dihydroxyacetonephosphate acyltransferase, the initial enzyme for the synthesis of PlsEtn. These results suggest that the reduction of plasmalogens in the cerebellum more likely compromises the cholesterol homeostasis, thereby reducing the transcriptional activities of LXRs, master regulators of cholesterol homeostasis.

本文言語英語
ページ(範囲)353-361
ページ数9
ジャーナルJournal of biochemistry
166
4
DOI
出版ステータス出版済み - 8 15 2019

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology

フィンガープリント 「Impaired plasmalogen synthesis dysregulates liver X receptor-dependent transcription in cerebellum」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル