Improving the efficiency of minimal model generation by extracting branching lemmas

Ryuzo Hasegawa, Hiroshi Fujita, Miyuki Koshimura

研究成果: Contribution to journalArticle査読

抄録

We present an efficient method for minimal model generation. The method employs branching assumptions and lemmas so as to prune branches that lead to nonminimal models, and to reduce minimality tests on obtained models. Branching lemmas are extracted from a subproof of a disjunct, and work as factorization. This method is applicable to other approaches such as Bry's constrained search or Niemelä's groundedness test, and greatlyimpro ves their efficiency. We implemented MM-MGTP based on the method. Experimental results with MM-MGTP show a remarkable speedup compared to MM-SATCHMO.

本文言語英語
ページ(範囲)234-245
ページ数12
ジャーナルTransactions of the Japanese Society for Artificial Intelligence
16
2
DOI
出版ステータス出版済み - 12 1 2001

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence

フィンガープリント 「Improving the efficiency of minimal model generation by extracting branching lemmas」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル