In-flight performance and initial results of plasma energy angle and composition experiment (PACE) on SELENE (Kaguya)

Yoshifumi Saito, Shoichiro Yokota, Kazushi Asamura, Takaaki Tanaka, Masaki N. Nishino, Tadateru Yamamoto, Yuta Terakawa, Masaki Fujimoto, Hiroshi Hasegawa, Hajime Hayakawa, Masafumi Hirahara, Masahiro Hoshino, Shinobu MacHida, Toshifumi Mukai, Tsugunobu Nagai, Tsutomu Nagatsuma, Tomoko Nakagawa, Masato Nakamura, Koh Ichiro Oyama, Eiichi SagawaSusumu Sasaki, Kanako Seki, Iku Shinohara, Toshio Terasawa, Hideo Tsunakawa, Hidetoshi Shibuya, Masaki Matsushima, Hisayoshi Shimizu, Futoshi Takahashi

研究成果: Contribution to journalArticle査読

91 被引用数 (Scopus)

抄録

MAP-PACE (MAgnetic field and Plasma experiment-Plasma energy Angle and Composition Experiment) on SELENE (Kaguya) has completed its ∼1.5-year observation of low-energy charged particles around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measured the distribution function of low-energy electrons in the energy range 6 eV-9 keV and 9 eV-16 keV, respectively. IMA and IEA measured the distribution function of low-energy ions in the energy ranges 7 eV/q-28 keV/q and 7 eV/q-29 keV/q. All the sensors performed quite well as expected from the laboratory experiment carried out before launch. Since each sensor has a hemispherical field of view, two electron sensors and two ion sensors installed on the spacecraft panels opposite each other could cover the full 3-dimensional phase space of low-energy electrons and ions. One of the ion sensors IMA is an energy mass spectrometer. IMA measured mass-specific ion energy spectra that have never before been obtained at a 100 km altitude polar orbit around the Moon. The newly observed data show characteristic ion populations around the Moon. Besides the solar wind, MAP-PACE-IMA found four clearly distinguishable ion populations on the dayside of the Moon: (1) Solar wind protons backscattered at the lunar surface, (2) Solar wind protons reflected by magnetic anomalies on the lunar surface, (3) Reflected/backscattered protons picked-up by the solar wind, and (4) Ions originating from the lunar surface/lunar exosphere.

本文言語英語
ページ(範囲)265-303
ページ数39
ジャーナルSpace Science Reviews
154
1-4
DOI
出版ステータス出版済み - 7 2010
外部発表はい

All Science Journal Classification (ASJC) codes

  • 天文学と天体物理学
  • 宇宙惑星科学

フィンガープリント

「In-flight performance and initial results of plasma energy angle and composition experiment (PACE) on SELENE (Kaguya)」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル