@inproceedings{fc756c3a9d4649b2a458c15d47b534ce,
title = "In-situ analysis of the in-plane current distribution difference between electrolyte-supported and anode-supported planar solid oxide fuel cells by segmented electrodes",
abstract = "In the planar solid oxide fuel cell (SOFC), the fuel/oxidant distributions cause current and temperature distributions over the electrodes under the separator (interconnector) ribs and flow channels. Optimized designs of the separator to improve the output power and chemical/thermo-mechanical durability of practical stacks require numerical models validated by in-situ current distributions measured. We have therefore clarified the difference of in-situ measurements in-plane spatial current variations between an anode-supported planar SOFC and electrolyte-supported by segmented cathodes opposing the anode rib and flow channels. We focus on the effect of the rib width on the spatial current distribution. We model the current and hydrogen partial pressure distributions by finite element modeling so that the model agrees with the in-situ measurements by the segmented cathodes with determining the exchange current densities, electrode porosities, electrolyte ion conductivities, and electrode ion/electron conductivities.",
author = "T. Ochiai and H. Nakajima and T. Karimata and T. Kitahara and K. Ito and Y. Ogura",
note = "Publisher Copyright: {\textcopyright} The Electrochemical Society.; 15th International Symposium on Solid Oxide Fuel Cells, SOFC 2017 ; Conference date: 23-07-2017 Through 28-07-2017",
year = "2017",
month = may,
day = "30",
doi = "10.1149/07801.2203ecst",
language = "English",
series = "ECS Transactions",
publisher = "Electrochemical Society Inc.",
number = "1",
pages = "2203--2209",
editor = "Singhal, {S. C.} and T. Kawada",
booktitle = "ECS Transactions",
edition = "1",
}