(In)approximability of maximum minimal FVS

Louis Dublois, Tesshu Hanaka, Mehdi Khosravian Ghadikolaei, Michael Lampis, Nikolaos Melissinos

研究成果: ジャーナルへの寄稿学術誌査読

抄録

We study the approximability of the NP-complete MAXIMUM MINIMAL FEEDBACK VERTEX SET problem. Informally, this natural problem seems to lie in an intermediate space between two more well-studied problems of this type: MAXIMUM MINIMAL VERTEX COVER, for which the best achievable approximation ratio is n, and UPPER DOMINATING SET, which does not admit any n1−ϵ approximation. We confirm and quantify this intuition by showing the first non-trivial polynomial time approximation for MAXIMUM MINIMAL FEEDBACK VERTEX SET with a ratio of O(n2/3), as well as a matching hardness of approximation bound of n2/3−ϵ, improving the previously known hardness of n1/2−ϵ. Having settled the problem's approximability in polynomial time, we move to the context of super-polynomial time. We devise a generalization of our approximation algorithm which, for any desired approximation ratio r, produces an r-approximate solution in time nO(n/r3/2). This time-approximation trade-off is essentially tight under the ETH.

本文言語英語
ページ(範囲)26-40
ページ数15
ジャーナルJournal of Computer and System Sciences
124
DOI
出版ステータス出版済み - 3月 2022
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 理論的コンピュータサイエンス
  • コンピュータ ネットワークおよび通信
  • 計算理論と計算数学
  • 応用数学

フィンガープリント

「(In)approximability of maximum minimal FVS」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル