Inapproximability of maximum r-regular induced connected subgraph problems

Yuichi Asahiro, Hiroshi Eto, Eiji Miyano

研究成果: ジャーナルへの寄稿記事

2 引用 (Scopus)

抜粋

Given a connected graph G = (V, E) on n vertices, the Maximum r-Regular Induced Connected Subgraph (r-MaxRICS) problem asks for a maximum sized subset of vertices S ⊆ V such that the induced subgraph G[S] on S is connected and r-regular. It is known that 2-MaxRICS and 3-MaxRICS are NP-hard. Moreover, 2-MaxRICS cannot be approximated within a factor of n1-ε in polynomial time for any ε > 0 unless P = NP. In this paper, we show that r-MaxRICS are NP-hard for any fixed integer r ≥ 4. Furthermore, we show that for any fixed integer r ≥ 3, r-MaxRICS cannot be approximated within a factor of n1/6-ε in polynomial time for any ε > 0 unless P = NP.

元の言語英語
ページ(範囲)443-449
ページ数7
ジャーナルIEICE Transactions on Information and Systems
E96-D
発行部数3
DOI
出版物ステータス出版済み - 3 2013
外部発表Yes

    フィンガープリント

All Science Journal Classification (ASJC) codes

  • Software
  • Hardware and Architecture
  • Computer Vision and Pattern Recognition
  • Artificial Intelligence
  • Electrical and Electronic Engineering

これを引用