Infection of RANKL-primed RAW-D macrophages with porphyromonas gingivalis promotes osteoclastogenesis in a TNF-α-independent manner

Akiko Kukita, Yuka Ichigi, Ippei Takigawa, Toshiyuki Watanabe, Toshio Kukita, Hiroshi Miyamoto

研究成果: ジャーナルへの寄稿記事

6 引用 (Scopus)

抄録

Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis.

元の言語英語
記事番号e38500
ジャーナルPLoS One
7
発行部数6
DOI
出版物ステータス出版済み - 6 18 2012

Fingerprint

Porphyromonas gingivalis
Macrophages
Osteogenesis
macrophages
Infection
infection
Somatostatin-Secreting Cells
osteoclasts
Osteoclasts
cells
polymyxin B
Polymyxin B
osteoblasts
Osteoblasts
Pathogens
Periodontitis
Neutralizing Antibodies
neutralizing antibodies
bone marrow
Bacteria

All Science Journal Classification (ASJC) codes

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)

これを引用

Infection of RANKL-primed RAW-D macrophages with porphyromonas gingivalis promotes osteoclastogenesis in a TNF-α-independent manner. / Kukita, Akiko; Ichigi, Yuka; Takigawa, Ippei; Watanabe, Toshiyuki; Kukita, Toshio; Miyamoto, Hiroshi.

:: PLoS One, 巻 7, 番号 6, e38500, 18.06.2012.

研究成果: ジャーナルへの寄稿記事

Kukita, Akiko ; Ichigi, Yuka ; Takigawa, Ippei ; Watanabe, Toshiyuki ; Kukita, Toshio ; Miyamoto, Hiroshi. / Infection of RANKL-primed RAW-D macrophages with porphyromonas gingivalis promotes osteoclastogenesis in a TNF-α-independent manner. :: PLoS One. 2012 ; 巻 7, 番号 6.
@article{802781fdd0174875ba026ae2ae6d178f,
title = "Infection of RANKL-primed RAW-D macrophages with porphyromonas gingivalis promotes osteoclastogenesis in a TNF-α-independent manner",
abstract = "Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis.",
author = "Akiko Kukita and Yuka Ichigi and Ippei Takigawa and Toshiyuki Watanabe and Toshio Kukita and Hiroshi Miyamoto",
year = "2012",
month = "6",
day = "18",
doi = "10.1371/journal.pone.0038500",
language = "English",
volume = "7",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "6",

}

TY - JOUR

T1 - Infection of RANKL-primed RAW-D macrophages with porphyromonas gingivalis promotes osteoclastogenesis in a TNF-α-independent manner

AU - Kukita, Akiko

AU - Ichigi, Yuka

AU - Takigawa, Ippei

AU - Watanabe, Toshiyuki

AU - Kukita, Toshio

AU - Miyamoto, Hiroshi

PY - 2012/6/18

Y1 - 2012/6/18

N2 - Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis.

AB - Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis.

UR - http://www.scopus.com/inward/record.url?scp=84862492669&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84862492669&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0038500

DO - 10.1371/journal.pone.0038500

M3 - Article

VL - 7

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 6

M1 - e38500

ER -