Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: Investigation using high-pressure torsion

Kaveh Edalati, Jorge M. Cubero-Sesin, Ali Alhamidi, Intan Fadhlina Mohamed, Zenji Horita

研究成果: Contribution to journalArticle査読

65 被引用数 (Scopus)

抄録

Several metals were severely deformed at cryogenic temperature in liquid nitrogen and at room temperatures in air using high-pressure torsion (HPT). Extra grain refinement to the nanometer level and extra hardening were achieved after cryogenic-HPT in niobium, which has a high melting temperature. In copper, which has a moderate melting temperature, nanograins formed during cryogenic-HPT but self-annealing, i.e., abnormal softening and grain coarsening to the micrometer level, occurred within a few hours after the cryogenic-HPT. In low-melting-temperature metals such as zinc, magnesium and aluminum, cryogenic-HPT led to extra softening and/or formation of coarser grains because of enhanced static recrystallization. The effect of impurities on grain size, hardness-strain behavior and self-annealing was also studied after cryogenic-HPT.

本文言語英語
ページ(範囲)103-110
ページ数8
ジャーナルMaterials Science and Engineering A
613
DOI
出版ステータス出版済み - 9 8 2014

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

フィンガープリント 「Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: Investigation using high-pressure torsion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル