Insight into metabolic diversity of the brown-rot basidiomycete Postia placenta responsible for sesquiterpene biosynthesis

semi-comprehensive screening of cytochrome P450 monooxygenase involved in protoilludene metabolism

研究成果: ジャーナルへの寄稿記事

1 引用 (Scopus)

抄録

A wide variety of sesquiterpenoids have been isolated from basidiomycetes, and their bioactive properties have attracted significant attention in an effort to understand biosynthetic machineries. As both sesquiterpene synthases and cytochrome P450 monooxygenases play key roles in the diversification of sesquiterpenoids, it is important to widely and mutually understand their biochemical properties. In this study, we performed genome-wide annotation and functional characterization of sesquiterpene synthases from the brown-rot basidiomycete Postia placenta. Using RT-PCR, we isolated 16 sesquiterpene synthases genes as full-length cDNAs. Heterologous expression revealed that the sesquiterpene synthases could produce a series of sesquiterpene scaffolds with distinct metabolic profiles. Based on metabolic studies, we identified 25 sesquiterpene scaffolds including Δ6-protoilludene produced by the sesquiterpene synthases. In particular, a protoilludene synthase from the brown-rot basidiomycete was characterized for the first time. Furthermore, we conducted a semi-comprehensive functional screening of cytochrome P450 monooxygenases from P. placenta to elucidate biosynthetic machineries involved in metabolisms of Δ6-protoilludene. Coexpression of protoilludene synthase and 184 isoforms of cytochrome P450 monooxygenases enabled the identification of CYP5344B1, CYP5348E1 and CYP5348J3, which catalysed the hydroxylation reaction of Δ6-protoilludene to produce Δ6-protoilludene-8-ol and Δ6-protoilludene-5-ol. Furthermore, structural isomers of Δ7-protoilludene-6-ol were obtained from incubation of Δ6-protoilludene-8-ol in acidic culture medium.

元の言語英語
ページ(範囲)952-965
ページ数14
ジャーナルMicrobial Biotechnology
11
発行部数5
DOI
出版物ステータス出版済み - 9 1 2018

Fingerprint

Basidiomycota
Sesquiterpenes
Biosynthesis
Mixed Function Oxygenases
Metabolism
Cytochrome P-450 Enzyme System
Placenta
Screening
Scaffolds
Genes
Hydroxylation
Isomers
Metabolome
Culture Media
Protein Isoforms
Complementary DNA
Genome
Polymerase Chain Reaction

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Bioengineering
  • Biochemistry
  • Applied Microbiology and Biotechnology

これを引用

@article{7ec1cd0e3d984dd68c97a25feba56abb,
title = "Insight into metabolic diversity of the brown-rot basidiomycete Postia placenta responsible for sesquiterpene biosynthesis: semi-comprehensive screening of cytochrome P450 monooxygenase involved in protoilludene metabolism",
abstract = "A wide variety of sesquiterpenoids have been isolated from basidiomycetes, and their bioactive properties have attracted significant attention in an effort to understand biosynthetic machineries. As both sesquiterpene synthases and cytochrome P450 monooxygenases play key roles in the diversification of sesquiterpenoids, it is important to widely and mutually understand their biochemical properties. In this study, we performed genome-wide annotation and functional characterization of sesquiterpene synthases from the brown-rot basidiomycete Postia placenta. Using RT-PCR, we isolated 16 sesquiterpene synthases genes as full-length cDNAs. Heterologous expression revealed that the sesquiterpene synthases could produce a series of sesquiterpene scaffolds with distinct metabolic profiles. Based on metabolic studies, we identified 25 sesquiterpene scaffolds including Δ6-protoilludene produced by the sesquiterpene synthases. In particular, a protoilludene synthase from the brown-rot basidiomycete was characterized for the first time. Furthermore, we conducted a semi-comprehensive functional screening of cytochrome P450 monooxygenases from P. placenta to elucidate biosynthetic machineries involved in metabolisms of Δ6-protoilludene. Coexpression of protoilludene synthase and 184 isoforms of cytochrome P450 monooxygenases enabled the identification of CYP5344B1, CYP5348E1 and CYP5348J3, which catalysed the hydroxylation reaction of Δ6-protoilludene to produce Δ6-protoilludene-8-ol and Δ6-protoilludene-5-ol. Furthermore, structural isomers of Δ7-protoilludene-6-ol were obtained from incubation of Δ6-protoilludene-8-ol in acidic culture medium.",
author = "Hirofumi Ichinose and Takuya Kitaoka",
year = "2018",
month = "9",
day = "1",
doi = "10.1111/1751-7915.13304",
language = "English",
volume = "11",
pages = "952--965",
journal = "Microbial Biotechnology",
issn = "1751-7907",
publisher = "John Wiley and Sons Ltd",
number = "5",

}

TY - JOUR

T1 - Insight into metabolic diversity of the brown-rot basidiomycete Postia placenta responsible for sesquiterpene biosynthesis

T2 - semi-comprehensive screening of cytochrome P450 monooxygenase involved in protoilludene metabolism

AU - Ichinose, Hirofumi

AU - Kitaoka, Takuya

PY - 2018/9/1

Y1 - 2018/9/1

N2 - A wide variety of sesquiterpenoids have been isolated from basidiomycetes, and their bioactive properties have attracted significant attention in an effort to understand biosynthetic machineries. As both sesquiterpene synthases and cytochrome P450 monooxygenases play key roles in the diversification of sesquiterpenoids, it is important to widely and mutually understand their biochemical properties. In this study, we performed genome-wide annotation and functional characterization of sesquiterpene synthases from the brown-rot basidiomycete Postia placenta. Using RT-PCR, we isolated 16 sesquiterpene synthases genes as full-length cDNAs. Heterologous expression revealed that the sesquiterpene synthases could produce a series of sesquiterpene scaffolds with distinct metabolic profiles. Based on metabolic studies, we identified 25 sesquiterpene scaffolds including Δ6-protoilludene produced by the sesquiterpene synthases. In particular, a protoilludene synthase from the brown-rot basidiomycete was characterized for the first time. Furthermore, we conducted a semi-comprehensive functional screening of cytochrome P450 monooxygenases from P. placenta to elucidate biosynthetic machineries involved in metabolisms of Δ6-protoilludene. Coexpression of protoilludene synthase and 184 isoforms of cytochrome P450 monooxygenases enabled the identification of CYP5344B1, CYP5348E1 and CYP5348J3, which catalysed the hydroxylation reaction of Δ6-protoilludene to produce Δ6-protoilludene-8-ol and Δ6-protoilludene-5-ol. Furthermore, structural isomers of Δ7-protoilludene-6-ol were obtained from incubation of Δ6-protoilludene-8-ol in acidic culture medium.

AB - A wide variety of sesquiterpenoids have been isolated from basidiomycetes, and their bioactive properties have attracted significant attention in an effort to understand biosynthetic machineries. As both sesquiterpene synthases and cytochrome P450 monooxygenases play key roles in the diversification of sesquiterpenoids, it is important to widely and mutually understand their biochemical properties. In this study, we performed genome-wide annotation and functional characterization of sesquiterpene synthases from the brown-rot basidiomycete Postia placenta. Using RT-PCR, we isolated 16 sesquiterpene synthases genes as full-length cDNAs. Heterologous expression revealed that the sesquiterpene synthases could produce a series of sesquiterpene scaffolds with distinct metabolic profiles. Based on metabolic studies, we identified 25 sesquiterpene scaffolds including Δ6-protoilludene produced by the sesquiterpene synthases. In particular, a protoilludene synthase from the brown-rot basidiomycete was characterized for the first time. Furthermore, we conducted a semi-comprehensive functional screening of cytochrome P450 monooxygenases from P. placenta to elucidate biosynthetic machineries involved in metabolisms of Δ6-protoilludene. Coexpression of protoilludene synthase and 184 isoforms of cytochrome P450 monooxygenases enabled the identification of CYP5344B1, CYP5348E1 and CYP5348J3, which catalysed the hydroxylation reaction of Δ6-protoilludene to produce Δ6-protoilludene-8-ol and Δ6-protoilludene-5-ol. Furthermore, structural isomers of Δ7-protoilludene-6-ol were obtained from incubation of Δ6-protoilludene-8-ol in acidic culture medium.

UR - http://www.scopus.com/inward/record.url?scp=85052104325&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85052104325&partnerID=8YFLogxK

U2 - 10.1111/1751-7915.13304

DO - 10.1111/1751-7915.13304

M3 - Article

VL - 11

SP - 952

EP - 965

JO - Microbial Biotechnology

JF - Microbial Biotechnology

SN - 1751-7907

IS - 5

ER -