TY - JOUR
T1 - Insulation characteristics of sisal, Human hair, Coir, Banana fiber composites at cryogenic temperatures
AU - Michael, D. Peter
AU - Harish, S.
AU - Bensely, A.
AU - Lal, D. Mohan
PY - 2010
Y1 - 2010
N2 - The integrity of the electrical insulation is of greatest importance in the reliability of high voltage equipment. For the development of high temperature superconductivity power equipments the cryogenic insulation technology need to be established. The present research work aimed to develop practical and reliable methods that can diagnose the degradation status of the electrical insulation. In the present work an analysis has been made to study the dielectric strengths of composite laminates for designing a good insulation system. The breakdown voltages of glass fiber reinforced plastic composite laminates, natural fiber composite laminates (coir, human hair, sisal, and banana) at room temperature (300 K) and liquid nitrogen temperature (77 K) has been examined. The experimental results show that the breakdown strength at room temperature for human hair, coir, sisal and banana were found to be 134.5 kV/cm, 52.92 kV/cm, 22.93 kV/cm, 20.31 kV/cm and 18.16 kV/cm respectively while the breakdown strength at cryogenic temperature for glass fiber reinforced plastic, human hair, coir, sisal and banana were found to be 177.86 kV/cm, 118.99 kV/cm, 120.84 kV/cm, 127.67 kV/cm and 102.29 kV/cm respectively. The results suggest that there exist a significant increase in the breakdown voltage at cryogenic temperatures. From the experimental results, it is concluded that dielectrics made of natural fiber composites can be considered as an insulation medium for cryogenic applications.
AB - The integrity of the electrical insulation is of greatest importance in the reliability of high voltage equipment. For the development of high temperature superconductivity power equipments the cryogenic insulation technology need to be established. The present research work aimed to develop practical and reliable methods that can diagnose the degradation status of the electrical insulation. In the present work an analysis has been made to study the dielectric strengths of composite laminates for designing a good insulation system. The breakdown voltages of glass fiber reinforced plastic composite laminates, natural fiber composite laminates (coir, human hair, sisal, and banana) at room temperature (300 K) and liquid nitrogen temperature (77 K) has been examined. The experimental results show that the breakdown strength at room temperature for human hair, coir, sisal and banana were found to be 134.5 kV/cm, 52.92 kV/cm, 22.93 kV/cm, 20.31 kV/cm and 18.16 kV/cm respectively while the breakdown strength at cryogenic temperature for glass fiber reinforced plastic, human hair, coir, sisal and banana were found to be 177.86 kV/cm, 118.99 kV/cm, 120.84 kV/cm, 127.67 kV/cm and 102.29 kV/cm respectively. The results suggest that there exist a significant increase in the breakdown voltage at cryogenic temperatures. From the experimental results, it is concluded that dielectrics made of natural fiber composites can be considered as an insulation medium for cryogenic applications.
UR - http://www.scopus.com/inward/record.url?scp=84874013450&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874013450&partnerID=8YFLogxK
U2 - 10.1177/204124791000100104
DO - 10.1177/204124791000100104
M3 - Article
AN - SCOPUS:84874013450
SN - 2041-2479
VL - 1
SP - 47
EP - 56
JO - Polymers from Renewable Resources
JF - Polymers from Renewable Resources
IS - 1
ER -