抄録
In this article, we give an explicit construction of the p-adic Fourier transform by Schneider and Teitelbaum, which allows for the investigation of the integral property. As an application, we give a certain integral basis of the space of K-locally analytic functions on the ring of integers OK for any finite extension K of Qp, generalizing the basis constructed by Amice for locally analytic functions on Zp. We also use our result to prove congruences of Bernoulli-Hurwitz numbers at non-ordinary (i.e. supersingular) primes originally investigated by Katz and Chellali.
本文言語 | 英語 |
---|---|
ページ(範囲) | 521-550 |
ページ数 | 30 |
ジャーナル | Annales de l'Institut Fourier |
巻 | 66 |
号 | 2 |
DOI | |
出版ステータス | 出版済み - 2016 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 代数と数論
- 幾何学とトポロジー