Intermediate temperature solid oxide fuel cells using LaGaO3 based oxide film deposited by PLD method

Tatsumi Ishihara, Hiroyuki Eto, Jingwang Yan

研究成果: ジャーナルへの寄稿記事

35 引用 (Scopus)

抜粋

Dense La0.9Sr0.1Ga0.8Mg 0.2O3-δ (LSGM, 5 μm in thickness)/Ce 0.8Sm0.2O2-δ (SDC, 400 nm in thickness) bilayer films were deposited on a dense NiO (Fe3O4)-SDC anode substrate by a pulsed laser deposition (PLD) method. After in-situ reduction, the substrate turned to be porous and it can be used as a porous anode substrate. The power density was strongly affected by the oxide ion conductor combined with LSGM and it was found that SDC is the most useful for achieving the high power density. Preparation of Sm0.5Sr 0.5CoO3 cathode film by PLD method is also studied for decreasing the contact resistance of cathode. Preparation of SSC film by PLD is effective for decreasing cathodic overpotential and 400 nm thick film is the most effective for achieving the high power density. At 773 K, the maximum power density of the cell becomes higher than 500 mW/cm2.

元の言語英語
ページ(範囲)1862-1867
ページ数6
ジャーナルInternational Journal of Hydrogen Energy
36
発行部数2
DOI
出版物ステータス出版済み - 1 1 2011

All Science Journal Classification (ASJC) codes

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Condensed Matter Physics
  • Energy Engineering and Power Technology

フィンガープリント Intermediate temperature solid oxide fuel cells using LaGaO<sub>3</sub> based oxide film deposited by PLD method' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用