TY - JOUR
T1 - Inversion of methane on transition-metal complexes
T2 - A possible mechanism for inversion of stereochemistry
AU - Yoshizawa, Kazunari
AU - Suzuki, Akiya
AU - Yamabe, Tokio
PY - 1999/6/9
Y1 - 1999/6/9
N2 - The inversion of methane bound to first-row transition-metal ions from Sc+ to Cu+ is systematically investigated using the B3LYP method, a hybrid density-functional-theory method of Becke and Lee, Yang, and Parr. The computed transition states for the methane inversion on the M+(CH4) complexes have a C(s) structure in which one pair of C-H bonds is about 1.2 Å in length and the other pair is about 1.1 Å. The barrier height for the methane inversion is significantly decreased from 109 kcal/mol for free methane to 43-48 kcal/mol on the late transition-metal complexes, Fe+(CH4), Co+(CH4), Ni+(CH4), and Cu+(CH4). Since each activation energy involves the binding energy of the complex (16 kcal/mol on the average), the actual barrier height should be lower by this quantity if measured from the dissociation limit. The inversion of methane can therefore occur at the transition-metal active center of catalysts or enzymes under ambient conditions through a thermally accessible transition state, and it would reasonably lead to inversion of stereochemistry at a carbon atom in catalytic reactions of hydrocarbons. We propose that a radical mechanism based on a planar carbon species may not be the sole source of the observed loss of stereochemistry in transition-metal-catalyzed hydrocarbon hydroxylations and other related reactions.
AB - The inversion of methane bound to first-row transition-metal ions from Sc+ to Cu+ is systematically investigated using the B3LYP method, a hybrid density-functional-theory method of Becke and Lee, Yang, and Parr. The computed transition states for the methane inversion on the M+(CH4) complexes have a C(s) structure in which one pair of C-H bonds is about 1.2 Å in length and the other pair is about 1.1 Å. The barrier height for the methane inversion is significantly decreased from 109 kcal/mol for free methane to 43-48 kcal/mol on the late transition-metal complexes, Fe+(CH4), Co+(CH4), Ni+(CH4), and Cu+(CH4). Since each activation energy involves the binding energy of the complex (16 kcal/mol on the average), the actual barrier height should be lower by this quantity if measured from the dissociation limit. The inversion of methane can therefore occur at the transition-metal active center of catalysts or enzymes under ambient conditions through a thermally accessible transition state, and it would reasonably lead to inversion of stereochemistry at a carbon atom in catalytic reactions of hydrocarbons. We propose that a radical mechanism based on a planar carbon species may not be the sole source of the observed loss of stereochemistry in transition-metal-catalyzed hydrocarbon hydroxylations and other related reactions.
UR - http://www.scopus.com/inward/record.url?scp=0033538281&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033538281&partnerID=8YFLogxK
U2 - 10.1021/ja9839318
DO - 10.1021/ja9839318
M3 - Article
AN - SCOPUS:0033538281
SN - 0002-7863
VL - 121
SP - 5266
EP - 5273
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 22
ER -