TY - JOUR
T1 - Involvement of cAMP signaling in elicitor-induced phytoalexin accumulation in Cupressus lusitanica cell cultures
AU - Zhao, Jian
AU - Guo, Yingqing
AU - Fujita, Koki
AU - Sakai, Kokki
PY - 2004/3
Y1 - 2004/3
N2 - • An increasing body of evidence on plant electrophysiology, biochemistry, and molecular biology shows that cAMP exists in higher plants and plays a role in several physiological processes by affecting potassium (K +) or calcium (Ca2+) fluxes. Our study here reports that cAMP is involved in elicitor-induced accumulation of a phytoalexin, β-thujaplicin, in Cupressus lusitanica cell cultures. • Treatment of C. lusitanica cultured cells with cAMP or its analogues stimulated β-thujaplicin accumulation. Cholera toxin and forskolin, activators of adenylyl cyclase, also stimulated β-thujaplicin accumulation. Enzyme immunoassay showed that after elicitor treatment, cAMP level in the elicited cells quickly increased to about three-to five-fold over the control. Cholera toxin and forskolin also stimulated cAMP accumulation in the absence of elicitor. • However, K+ and Ca2+ channel blockers inhibited the β-thujaplicin accumulation induced by cAMP analogues, suggesting that the cAMP-stimulated β-thujaplicin accumulation may involve Ca2+ and K+ fluxes. Several ionophores mimicked cAMP induction of β-thujaplicin accumulation. • Cross-talk between cAMP treatment and the ethylene signaling pathway was also observed to work in the cell cultures via Ca2+ signaling. The study also indicates an involvement of protein kinase cascades in cAMP signaling processes, leading to both phytoalexin and ethylene production.
AB - • An increasing body of evidence on plant electrophysiology, biochemistry, and molecular biology shows that cAMP exists in higher plants and plays a role in several physiological processes by affecting potassium (K +) or calcium (Ca2+) fluxes. Our study here reports that cAMP is involved in elicitor-induced accumulation of a phytoalexin, β-thujaplicin, in Cupressus lusitanica cell cultures. • Treatment of C. lusitanica cultured cells with cAMP or its analogues stimulated β-thujaplicin accumulation. Cholera toxin and forskolin, activators of adenylyl cyclase, also stimulated β-thujaplicin accumulation. Enzyme immunoassay showed that after elicitor treatment, cAMP level in the elicited cells quickly increased to about three-to five-fold over the control. Cholera toxin and forskolin also stimulated cAMP accumulation in the absence of elicitor. • However, K+ and Ca2+ channel blockers inhibited the β-thujaplicin accumulation induced by cAMP analogues, suggesting that the cAMP-stimulated β-thujaplicin accumulation may involve Ca2+ and K+ fluxes. Several ionophores mimicked cAMP induction of β-thujaplicin accumulation. • Cross-talk between cAMP treatment and the ethylene signaling pathway was also observed to work in the cell cultures via Ca2+ signaling. The study also indicates an involvement of protein kinase cascades in cAMP signaling processes, leading to both phytoalexin and ethylene production.
UR - http://www.scopus.com/inward/record.url?scp=1042278603&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1042278603&partnerID=8YFLogxK
U2 - 10.1111/j.1469-8137.2004.00976.x
DO - 10.1111/j.1469-8137.2004.00976.x
M3 - Article
AN - SCOPUS:1042278603
SN - 0028-646X
VL - 161
SP - 723
EP - 733
JO - New Phytologist
JF - New Phytologist
IS - 3
ER -