Isomorphisms between determinantal point processes with translation-invariant kernels and Poisson point processes

研究成果: Contribution to journalArticle査読

抄録

We prove the Bernoulli property for determinantal point processes on with translation-invariant kernels. For the determinantal point processes on with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: Phase multiplicity, bernoullicity, and domination. Duke Math. J. 120 (2003), 515-575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: Fermion shifts and their ergodic properties. Ann. Probab. 31 (2003), 1533-1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.

本文言語英語
ジャーナルErgodic Theory and Dynamical Systems
DOI
出版ステータス受理済み/印刷中 - 2020

All Science Journal Classification (ASJC) codes

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Isomorphisms between determinantal point processes with translation-invariant kernels and Poisson point processes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル