Kinetic analysis of aqueous-phase cyclodehydration of 1,4-butanediol and erythritol over a layered niobium molybdate solid acid

研究成果: ジャーナルへの寄稿学術誌査読

9 被引用数 (Scopus)

抄録

Aqueous-phase reactions are desirable for the transformation of biomass-derived species because the use of water is inherently environmentally friendly. Cyclodehydration of C4 diols in aqueous solution was examined using a variety of water-tolerant solid acids including H-type zeolites (H-ZSM5, H-mordenite, H-beta), Amberlyst-15 ion-exchange resin, niobic acid and layered HNbMoO6. Cyclodehydration of 1,4-butanediol (HO-CH2CH2CH2CH2-OH) and erythritol (HO-CH2CH-OHCH-OHCH2-OH) proceeded on three of the Brønsted solid acids, HNbMoO6, H-ZSM5 and Amberlyst-15. Although HNbMoO6 showed moderate activity for 1,4-butanediol dehydration, it exhibited the highest activity for erythritol dehydration. Kinetic analysis indicated that 1,4-butanediol and erythritol dehydration over HNbMoO6 followed a Tamaru-type mechanism with two successive irreversible steps. A statistical mechanics analysis of the pre-exponential factor gave good agreement with experimental results, in which the pre-exponential factor for erythritol dehydration was much larger than that for 1,4-butanediol dehydration. Both erythritol and 1,4-butanediol could be intercalated in the interlayer spaces of the oxide. The expansion of the interlayer spaces for erythritol was, however, much larger than that for 1,4-butanediol. This improvement of accessibility is considered to be responsible for the higher reactivity of erythritol.

本文言語英語
ページ(範囲)791-799
ページ数9
ジャーナルCatalysis Science and Technology
6
3
DOI
出版ステータス出版済み - 2016
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 触媒

フィンガープリント

「Kinetic analysis of aqueous-phase cyclodehydration of 1,4-butanediol and erythritol over a layered niobium molybdate solid acid」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル