Kinetic growth of self-formed In2O3 nanodots via phase segregation: Ni/InAs system

Chin Hung Liu, Szu Ying Chen, Cheng Ying Chen, Jr Hau He, Lih Juann Chen, Johnny C. Ho, Yu Lun Chueh

研究成果: Contribution to journalArticle査読

6 被引用数 (Scopus)


Highly compact In2O3 nanodots with uniform size were synthesized by a novel approach via direct annealing of Ni/InAs samples at temperatures over 250 °C. The In2O3 nanodots were formed by solid diffusion between nickel and indium arsenide (InAs) and phase segregation via a catalyst-assisted kinetic process. By controlling the annealing time and ambient conditions, the size and density of In 2O3 nanodots can be controlled. From photoluminescence (PL) measurements, two distinct peaks located at ∼430 and ∼850 nm, corresponding to 2.9 and 1.5 eV for In2O3 nanodots, can be observed. The peaks originate from radioactive recombination centers such as oxygen vacancies or indium interstitials inside In2O3 nanodots. The periodic array of Ni microdiscs with diameters and interdisc spacing of ∼5 and ∼10 μm on InAs substrate surface prepared by a photolithography process demonstrated the precise control of In 2O3 nanodots at a specific position. Applications for precisely locating optoelectronic nanodevices in combination with electronic nanodevices are envisioned.

ジャーナルACS nano
出版ステータス出版済み - 8 23 2011

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Engineering(all)
  • Physics and Astronomy(all)

フィンガープリント 「Kinetic growth of self-formed In<sub>2</sub>O<sub>3</sub> nanodots via phase segregation: Ni/InAs system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。