Labyrinthine versus straight-striped patterns generated by two-dimensional Turing systems

Hiroto Shoji, Yoh Iwasa

研究成果: ジャーナルへの寄稿学術誌査読

14 被引用数 (Scopus)


Striped patterns are often observed on fish skin. Such patterns have been accounted for by reaction-diffusion (RD) Turing-type models, in which two substances can spontaneously form a spatially heterogeneous pattern in a homogeneous field. Among the striped patterns generated by Turing-type models, some are "straight-striped patterns," with many stripes running in parallel, while others are "labyrinthine patterns," in which the stripes often change direction, merge with each other, and frequently branch out. RD models differ in terms of their tendency to generate either labyrinthine or straight-striped patterns. Here, we studied the conditions under which either a labyrinthine or straight-striped pattern would emerge. First, we defined an index for stripe clearness, Sh. Straight-striped patterns (large Sh) are formed if only a narrow range of spatial periods corresponds to an unstable mode. Labyrinthine patterns (small Sh) are formed when a wide range of spatial periods is unstable. More specifically, labyrinthine patterns are formed when the maximum spatial period of unstable modes is more than twice that of the minimum spatial period of unstable modes; otherwise, straight-striped patterns are formed. We then examined RD models with nonlinear reaction terms, including both activator-inhibitor and substrate-depletion models, and we demonstrated that the same conclusions hold with respect to the conditions required for labyrinthine versus straight-striped patterns.

ジャーナルJournal of Theoretical Biology
出版ステータス出版済み - 11月 7 2005

!!!All Science Journal Classification (ASJC) codes

  • 統計学および確率
  • モデリングとシミュレーション
  • 生化学、遺伝学、分子生物学(全般)
  • 免疫学および微生物学(全般)
  • 農業および生物科学(全般)
  • 応用数学


「Labyrinthine versus straight-striped patterns generated by two-dimensional Turing systems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。