Learning activity features of high performance students

研究成果: Contribution to journalConference article査読

10 被引用数 (Scopus)


In this paper, we present a method of identifying learning activities that are important for students to achieve good grades. For this purpose, the data of 99 students were collected from a learning management system and an e-book system, including attendance, time on preparation and review, submission of reports, and quiz scores. We applied a support vector machine to these data to calculate a score of importance for each learning activity reflecting its contribution to the attainment of an A grade. Selecting certain important learning activities by following several evaluation measures, we verified that these learning activities played a crucial role in predicting final student achievements. One of the obtained results implies that time on preparation and review in the middle part of a course influences a student's final achievement.

ジャーナルCEUR Workshop Proceedings
出版ステータス出版済み - 2016
イベント1st International Workshop on Learning Analytics Across Physical and Digital Spaces, CrossLAK 2016 - Edinburgh, Scotland, 英国
継続期間: 4 25 20164 29 2016

All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンス(全般)


「Learning activity features of high performance students」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。