Learning of symbiotic relations among agents by using neural networks

Kotaro Hirasawa, Hidemasa Yoshida, Katsushige Nakanishi, Jinglu Hu, Junichi Murata

研究成果: Contribution to conferencePaper査読

抄録

Symbiotic relation among agents is regarded as one of the most basic relations in the complex systems. In this paper, a method for constructing the required symbiotic relations among the agents is proposed, where the agent is made up of a layered neural network and its parameters are trained in order to realize the required symbiotic relations. From simulations of the ecosystems, whose agent corresponds to the species, it has been clarified that the proposed method can give an ecosystem model with more flexible and more powerful representation abilities than the conventional Lotka-Volterra model.

本文言語英語
ページ583-588
ページ数6
出版ステータス出版済み - 1 1 2002
イベント2002 International Joint Conference on Neural Networks (IJCNN '02) - Honolulu, HI, 米国
継続期間: 5 12 20025 17 2002

その他

その他2002 International Joint Conference on Neural Networks (IJCNN '02)
国/地域米国
CityHonolulu, HI
Period5/12/025/17/02

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 人工知能

フィンガープリント

「Learning of symbiotic relations among agents by using neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル