Learning the micro deformations by max-pooling for offline signature verification

Yuchen Zheng, Brian Kenji Iwana, Muhammad Imran Malik, Sheraz Ahmed, Wataru Oyama, Seiichi Uchida

研究成果: Contribution to journalArticle査読

抄録

For signature verification systems, micro deformations can be defined as the small differences in the same strokes of signatures or special writing habits of different signers. These micro deformations can reveal the core distinction between the genuine signatures and skilled forgeries. In this paper, we prove that Convolutional Neural Networks (CNNs) have the potential to extract those micro deformations by max-pooling. More specifically, the micro deformations can be determined by watching the location coordinates of the maximum values in pooling windows of max-pooling. Extensive analysis and experiments demonstrate that it is possible to achieve state-of-the-art performance by using this location information as a new feature for capturing micro deformations, along with convolutional features. The proposed method outperforms the state-of-the-art systems on four publicly available datasets of different languages, i.e., English (GPDSsynthetic, CEDAR), Persian (UTSig), and Hindi (BHSig260).

本文言語英語
論文番号108008
ジャーナルPattern Recognition
118
DOI
出版ステータス出版済み - 10 2021

All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 信号処理
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Learning the micro deformations by max-pooling for offline signature verification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル