Least squares superposition codes with bernoulli dictionary are still reliable at rates up to capacity

研究成果: ジャーナルへの寄稿学術誌査読

7 被引用数 (Scopus)

抄録

For the additive white Gaussian noise channel with average power constraint, sparse superposition codes with least squares decoding are proposed by Barron and Joseph in 2010. The codewords are designed by using a dictionary each entry of which is drawn from a Gaussian distribution. The error probability is shown to be exponentially small for all rates up to the capacity. This paper proves that when each entry of the dictionary is drawn from a Bernoulli distribution, the error probability is also exponentially small for all rates up to the capacity. The proof is via a central limit theorem-type inequality, which we show for this analysis.

本文言語英語
論文番号6776455
ページ(範囲)2737-2750
ページ数14
ジャーナルIEEE Transactions on Information Theory
60
5
DOI
出版ステータス出版済み - 5月 2014

!!!All Science Journal Classification (ASJC) codes

  • 情報システム
  • コンピュータ サイエンスの応用
  • 図書館情報学

フィンガープリント

「Least squares superposition codes with bernoulli dictionary are still reliable at rates up to capacity」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル