Lipschitz continuous ordinary differential equations are polynomial-space complete

Akitoshi Kawamura

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

6 被引用数 (Scopus)

抄録

in answer to Ko's question raised in 1983, we show that an initial value problem given by a polynomialtime computable, Lipschitz continuous function can have a polynomial-space complete solution. The key insight is simple: the Lipschitz condition means that the feedback in the differential equation is weak. We define a class of polynomial-space computation tableaux with equally restricted feedback, and show that they are still polynomialspace complete. The same technique also settles Ko's two later questions on Volterra integral equations.

本文言語英語
ホスト出版物のタイトルProceedings of the 2009 24th Annual IEEE Conference on Computational Complexity, CCC 2009
ページ149-160
ページ数12
DOI
出版ステータス出版済み - 11 9 2009
イベント2009 24th Annual IEEE Conference on Computational Complexity, CCC 2009 - Paris, フランス
継続期間: 7 15 20097 18 2009

出版物シリーズ

名前Proceedings of the Annual IEEE Conference on Computational Complexity
ISSN(印刷版)1093-0159

その他

その他2009 24th Annual IEEE Conference on Computational Complexity, CCC 2009
Countryフランス
CityParis
Period7/15/097/18/09

All Science Journal Classification (ASJC) codes

  • Software
  • Theoretical Computer Science
  • Computational Mathematics

フィンガープリント 「Lipschitz continuous ordinary differential equations are polynomial-space complete」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル