TY - JOUR
T1 - Liquid injection ALD of Pb (Zr,Ti) Ox thin films by a combination of self-regulating component oxide processes
AU - Watanabe, Takayuki
AU - Hoffmann-Eifert, Susanne
AU - Peter, Frank
AU - Mi, Shaobo
AU - Jia, Chunlin
AU - Hwang, Cheol Seong
AU - Waser, Rainer
PY - 2007/11/1
Y1 - 2007/11/1
N2 - Quaternary Pb (Zr,Ti) Ox [PZT] films were deposited at 240°C by a combination of liquid injection atomic layer depositions (ALD) of binary PbO, Ti Ox, and Zr Ox thin films. We used water as the oxidant and two sets of precursors: Pb (C11 H19 O2) 2 [Pb (DPM)2], Zr (C11 H19 O2) 4 [Zr (DPM)4], and either Ti (O C3 H7) 2 (C11 H19 O2) 2 [Ti (Oi-Pr)2 (DPM)2] or (TiO C3 H7) 4 [Ti (Oi-Pr)4]. These precursors were dissolved in ethylcyclohexane and separately injected into a vaporizer. The deposition rates of the metal elements were investigated as a function of the input of the solutions. We started the ALD-PZT process with Ti (Oi-Pr)2 (DPM)2. When the input of one solution was increased, the deposition rates of the metal elements continued to increase or fluctuate, showing a complex interdependence. A PZT film deposited on a three-dimensional (3D) structure had an inhomogeneous cation composition. The film uniformity on the 3D structure was significantly improved by substituting Ti (Oi-Pr)2 (DPM)2 with Ti (Oi-Pr)4. In this ALD-PZT process, self-regulated growths were confirmed for Pb and Zr. Although the deposition rate of Ti did not saturate due to a catalytic decomposition, this study suggests that the multilayer stacking ALD process is an effective method for building up homogeneous layers of multicomponent materials on desired 3D structures.
AB - Quaternary Pb (Zr,Ti) Ox [PZT] films were deposited at 240°C by a combination of liquid injection atomic layer depositions (ALD) of binary PbO, Ti Ox, and Zr Ox thin films. We used water as the oxidant and two sets of precursors: Pb (C11 H19 O2) 2 [Pb (DPM)2], Zr (C11 H19 O2) 4 [Zr (DPM)4], and either Ti (O C3 H7) 2 (C11 H19 O2) 2 [Ti (Oi-Pr)2 (DPM)2] or (TiO C3 H7) 4 [Ti (Oi-Pr)4]. These precursors were dissolved in ethylcyclohexane and separately injected into a vaporizer. The deposition rates of the metal elements were investigated as a function of the input of the solutions. We started the ALD-PZT process with Ti (Oi-Pr)2 (DPM)2. When the input of one solution was increased, the deposition rates of the metal elements continued to increase or fluctuate, showing a complex interdependence. A PZT film deposited on a three-dimensional (3D) structure had an inhomogeneous cation composition. The film uniformity on the 3D structure was significantly improved by substituting Ti (Oi-Pr)2 (DPM)2 with Ti (Oi-Pr)4. In this ALD-PZT process, self-regulated growths were confirmed for Pb and Zr. Although the deposition rate of Ti did not saturate due to a catalytic decomposition, this study suggests that the multilayer stacking ALD process is an effective method for building up homogeneous layers of multicomponent materials on desired 3D structures.
UR - http://www.scopus.com/inward/record.url?scp=35549000100&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=35549000100&partnerID=8YFLogxK
U2 - 10.1149/1.2789295
DO - 10.1149/1.2789295
M3 - Article
AN - SCOPUS:35549000100
VL - 154
SP - G262-G269
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
SN - 0013-4651
IS - 12
ER -