Local exponents and infinitesimal generators of canonical transformations on boson fock spaces

F. Hiroshima, K. R. Ito

研究成果: Contribution to journalArticle査読

5 被引用数 (Scopus)

抄録

A one-parameter symplectic group {e} tεℝ derives proper canonical transformations indexed by t on a Boson-Fock space. It has been known that the unitary operator Ut implementing such a proper canonical transformation gives a projective unitary representation of {e}tεℝ on the Boson-Fock space and that Ut can be expressed as a normal-ordered form. We rigorously derive the self-adjoint operator Δ(Â) and a local exponent ∫0tτÂ(s)ds with a real-valued function τÂ(·) such that Ut = ei∫0t τ  (s)ds e itΔ(Â).

本文言語英語
ページ(範囲)547-571
ページ数25
ジャーナルInfinite Dimensional Analysis, Quantum Probability and Related Topics
7
4
DOI
出版ステータス出版済み - 12 2004
外部発表はい

All Science Journal Classification (ASJC) codes

  • Statistical and Nonlinear Physics
  • Statistics and Probability
  • Mathematical Physics
  • Applied Mathematics

フィンガープリント 「Local exponents and infinitesimal generators of canonical transformations on boson fock spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル